Week |
Class | Topic | Due | Where | ||||
---|---|---|---|---|---|---|---|---|
0 | 0. Computer Career and Data Research & Technologies | |||||||
0.1 A computer career | ||||||||
0.2 Data research | ||||||||
0.3 Data technologies | ||||||||
1 | 08/28 08/30 |
1. Introduction to DATA 525 | ||||||
1.1 Course introduction | ||||||||
1.2 Data life cycle | ||||||||
1.3 Topics covered | ||||||||
2 | 09/04 09/06 |
2. Programmining Exercise I | ||||||
2.1 Specifications | ||||||||
2.2 Web page download | ||||||||
2.3 Code sample | ||||||||
09/04 |
Last day to add a course or drop without record — 100% refund Last day to add audit or change to/from audit Last day to receive a refund on a dropped class Drops after the last day to add will appear on a transcript. |
|||||||
09/02 |
|
|||||||
3 | 09/09 09/11 09/13 |
3. Essential Technologies for Exercise Construction | ||||||
3.1 Essential software and tools | ||||||||
3.2 Using Linux | ||||||||
3.3 Writing HTML scripts | ||||||||
4 | 09/16 09/18 09/20 |
4. PHP (HyperText Preprocessor) | ||||||
4.1 LAMP | ||||||||
4.2 PHP | ||||||||
4.3 MySQL | ||||||||
5 | 09/23 09/25 09/27 |
5. Web Search Services | ||||||
5.1 The World Wide Web | ||||||||
5.2 Web page information | ||||||||
5.3 Web search methods | ||||||||
6 | 09/30 10/02 10/04 |
6. Information Retrieval (IR) | ||||||
6.1 Various IR methods | ||||||||
6.2 Automatic indexing methods | ||||||||
6.3 Data classification and clustering | ||||||||
7 | 10/07 10/11 |
7. The PageRank Algorithm | ||||||
7.1 Background | ||||||||
7.2 The PageRank algorithm | ||||||||
7.3 Computing PageRank scores | ||||||||
10/09 |
|
|||||||
8 | 10/14 10/16 10/18 |
8. Firebase Database | ||||||
8.1 Programmining Exercise II | ||||||||
8.2 Introduction to Firebase | ||||||||
8.3 Using Firebase | ||||||||
9 | 10/21 10/23 10/25 |
9. TensorFlow | ||||||
9.1 TFJS operations | ||||||||
9.2 TFJS models | ||||||||
9.3 TFJS visor | ||||||||
10 | 10/28 10/30 11/01 |
10. A TensorFlow.js Example | ||||||
10.1 Example introduction | ||||||||
10.2 Example model | ||||||||
10.3 Example training | ||||||||
11 | 11/04 11/06 11/08 |
11. JavaScript | ||||||
11.1 JavaScript syntax | ||||||||
11.2 JavaScript instructions | ||||||||
11.3 JavaScript examples | ||||||||
12 | 11/13 11/15 |
12. Decision Trees | ||||||
12.1 Background | ||||||||
12.2 Measuring impurity | ||||||||
12.3 Information gain | ||||||||
11/15 |
Last day to change to or from S/U grading Last day to change to or from audit grading Last day to drop a full-term course or withdraw from school |
|||||||
11/11 |
|
|||||||
13 | 11/18 11/22 |
13. k-Nearest Neighbors (kNN) Algorithm | ||||||
13.1 Background | ||||||||
13.2 kNN for prediction and smoothing | ||||||||
13.3 Strengths and weaknesses | ||||||||
11/20 |
|
|||||||
14 | 11/25 | 14. Artificial Neural Networks (ANNs) | ||||||
14.1 Artificial intelligence | ||||||||
14.2 Backpropagation | ||||||||
14.3 Genann: a minimal ANN | ||||||||
11/27 11/28 11/29 |
|
|||||||
15 | 12/02 12/04 12/06 |
15. Data Processing and Ming | ||||||
15.1 Data science | ||||||||
15.2 Data warehouse | ||||||||
15.3 Data fusion | ||||||||
16 | 12/09 12/11 |
16. Data Mining Concepts | ||||||
16.1 Introduction to data mining | ||||||||
16.2 Data mining steps | ||||||||
16.3 Data mining techniques | ||||||||
17 | 12/18 |
|
||||||
18 | 12/24 | Grades posted before noon, Tuesday |
A system administrator has 2 problems: - dumb users - smart users |