
A Formal Semantics for the C Programming Language

Nikolaos S. Papaspyrou

Doctoral Dissertation

February 1998

National Technical University of Athens
Department of Electrical and Computer Engineering

Division of Computer Science
Software Engineering Laboratory

National Technical University of Athens
Department of Electrical and Computer Engineering
Division of Computer Science
Software Engineering Laboratory

Copyright c
�

Nikolaos S. Papaspyrou, 1998.
All rights reserved.

This work is copyright and may not be reproduced, stored nor distributed in whole or in part for com-
mercial purposes. Permission is hereby granted to reproduce, store and distribute this work for non-
profit, educational and research purposes, provided that the source is acknowledged and the present
copyright message is retained. Enquiries regarding use for profit should be directed to the author.

Nikolaos S. Papaspyrou, A Formal Semantics for the C Programming Language, Doctoral Disserta-
tion, National Technical University of Athens, Department of Electrical and Computer Engineering,
Software Engineering Laboratory, February 1998.

URL: http://www.softlab.ntua.gr/ � nickie/Thesis/
Pages: xvi + 253

Also available as: Technical Report CSD-SW-TR-1-98, National Technical University of Athens, De-
partment of Electrical and Computer Engineering, Software Engineering Laboratory, February 1998.

URL: http://www.softlab.ntua.gr/techrep/
FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

Abstract

C together with its descendants represents a strong and indisputable status quo in the current software
industry. It is a very popular general-purpose programming language, characterized by its economy
of expression, its large set of operators and data types, and its concern for source code portability. The
current reference document for C is the international standard ISO/IEC 9899:1990. The semantics of
C is informally defined in the standard, using natural language. This causes a number of ambiguities
and problems of interpretation about the intended semantics of the language.

In this thesis, a formal denotational semantics for the ANSI C programming language is proposed,
with emphasis on its accuracy and completeness with respect to the standard. It is demonstrated that
a programming language as useful in practice and as inherently complicated as C can nonetheless
be defined formally. The proposed semantics could be used as a precise, unambiguous, abstract and
implementation-independent standard for the language. Moreover, it would be a basis for the formal
reasoning about C programs and a valuable theoretical tool in the software development process.

In order to improve in modularity and elegance, the proposed semantics uses several monads and
monad transformers to model different aspects of computations. Interesting results have been achieved
in the attempt to accurately model complex characteristics of C, such as the unspecified order of
evaluation and sequence points, using monad notation. These results may be useful in specifying the
semantics of programming languages supporting non-deterministic features and parallelism.

An implementation of an abstract interpreter for C programs based on the proposed semantics has
also been developed, using Haskell as the implementation language. The implementation has been
used to evaluate the accuracy and completeness of the proposed semantics. Although this process is
still under way, the results so far have been entirely satisfactory.

Keywords

ANSI C programming language, ISO/IEC 9899:1990 standard, formal definition, denotational seman-
tics, monads, monad transformers.

Acknowledgements

I want to thank my supervisor, Manolis Skordalakis, for all the guidance he has constantly given me
and for his confidence. In the ten years that I know him, he was always been accessible whenever
I needed him, helpful and friendly. My sincere thanks are also due to the members of my defense
committee, Giorgos Papakonstantinou, Andreas Stafylopatis, Stathis Zachos, Panagiotis Tsanakas,
Timos Sellis and Panos Rondogiannis, for their prompt and effective help, their valuable advice and
the inspiring conversations that we have had.

My way of thinking and the direction of my research has been greatly influenced by my studies
at Cornell University. I would like to thank my advisor there, David Gries, and the other members of
the CS department faculty for teaching me to combine theory and practice, directing me towards the
formal study of programming languages and providing me access to plentiful literature. It took some
time until I fully appreciated this lesson and I feel that I never had the chance to thank them.

The members of the Software Engineering Laboratory have always been good friends. In partic-
ular, I wish to thank Vassilis Vescoukis, Simos Retalis, Tassos Koutoumanos, Clio Sgouropoulou and
Kostas Tavernarakis for their outstanding support, the long hours of conversation and the good times
that we have shared. Also, my sincere thanks go to the laboratory’s numerous administrators for the
technical support that they have never refused in all these years.

Many thanks are due to Dragan Maćoš for introducing me to monads, making useful suggestions
about this thesis and being a friend. Moreover, I want to thank Tasos Viglas and Vassilis Papadimos
for their help during the early debugging of the developed semantics, Alkis Polyzotis, Giannis Sis-
manis, Manos Renieris and Katerina Potika for their suggestions regarding the implementation of the
developed semantics.

I would also like to thank my friends who have always offered their love, encouragement and
support. They made my studies more enjoyable. Last but not least, my wholehearted thanks go to my
family and my companion Katerina for their endless patience, love, and faith, and for giving me the
option to abstain from some activities that were incompatible with my studies.

Nikolaos S. Papaspyrou,

Athens, February 27, 1998.

This thesis was typeset with the LATEX 2 � document preparation system, using the thesis class
written by Wenzel Matiaske. Paul Taylor’s diagrams package for typesetting commutative diagrams
and QED package for typesetting mathematical proofs were extremely useful, as well as Peter Møller
Neergaard’s semantic package for typesetting inference rules.

Contents

Abstract ��� iii

Acknowledgements ��� iv

Contents ��� vi

List of tables ��� xiii

List of figures ��� xiii

Part I Prelude 1

1. Introduction ��� 3
1.1 The C programming language . 3
1.2 Programming language semantics . 5
1.3 Overview of this thesis . 7

1.3.1 Motivation . 8
1.3.2 Methodology . 10
1.3.3 Contribution . 13

1.4 Overview of related work . 14
1.5 Structure of this thesis . 15

2. An overview of C ��� 17
2.1 Selected issues from the syntax and semantics of C 17

2.1.1 Declarations . 18
2.1.2 Expressions . 19
2.1.3 Statements . 19

2.2 Abstract syntax . 20
2.2.1 Declarations . 20
2.2.2 Expressions . 22
2.2.3 Statements . 23

2.3 Deviations from the standard . 23

3. Mathematical background ��� 27
3.1 Category theory . 27

3.1.1 Basic definitions . 27
3.1.2 Functors and natural transformations . 28

viii Contents

3.1.3 Adjunctions . 29
3.1.4 Products and sums . 30

3.2 Monads and monad transformers . 31
3.2.1 The categorical approach . 31
3.2.2 The functional approach . 32

3.3 Domain theory . 33
3.3.1 Preliminaries . 33
3.3.2 Domains . 34
3.3.3 Domain constructions . 35
3.3.4 Categorical properties of domains . 37
3.3.5 Diagrams, cones and colimits . 38
3.3.6 Powerdomains . 39

3.4 The meta-language . 41
3.4.1 Core meta-language . 41
3.4.2 Syntactic sugar . 42
3.4.3 Auxiliary functions . 43

Part II Static semantics 45

4. Static semantic domains ��� ������� 47
4.1 Domain ordering . 47
4.2 Auxiliary domains . 47
4.3 Types . 48
4.4 The error monad . 50
4.5 Environments . 51

4.5.1 Type environments . 51
4.5.2 Enumeration environments . 54
4.5.3 Member environments . 54
4.5.4 Function prototypes . 56

4.6 Auxiliary functions . 57
4.6.1 Predicates related to types . 57
4.6.2 Functions related to types . 61
4.6.3 Compatible and composite types . 64
4.6.4 Functions related to qualifiers . 67
4.6.5 Miscellaneous functions . 68

5. Static semantics of declarations ��� 71
5.1 Static semantic functions and equations . 71
5.2 External declarations . 72
5.3 Declarations . 73

5.3.1 Basic types and qualifiers . 74
5.3.2 Initializations . 75
5.3.3 Structures and unions . 76
5.3.4 Enumerations . 79
5.3.5 Declarators . 80
5.3.6 Type names . 82

Contents ix

6. Static semantics of recursively defined types ��� 83
6.1 Some examples . 83
6.2 Type environments revised . 87
6.3 The fixing process . 89

Part III Typing semantics 91

7. Typing judgements ��� 93
7.1 Introduction to typing . 93
7.2 Typing judgements . 95
7.3 Discussion of uniqueness in typing . 98

8. Typing semantics of expressions ��� 101
8.1 Main typing relation . 101

8.1.1 Primary expressions . 102
8.1.2 Postfix operators . 103
8.1.3 Unary operators . 104
8.1.4 Cast operators . 106
8.1.5 Multiplicative operators . 106
8.1.6 Additive operators . 107
8.1.7 Bitwise shift operators . 107
8.1.8 Relational operators . 108
8.1.9 Equality operators . 109
8.1.10 Bitwise logical operators . 110
8.1.11 Logical operators . 110
8.1.12 Conditional operator . 111
8.1.13 Assignment operators . 112
8.1.14 Comma operator . 113
8.1.15 Implicit coercions . 113

8.2 Auxiliary rules . 114
8.2.1 Typing from declarations . 114
8.2.2 Type names . 114
8.2.3 Assignment rules . 114
8.2.4 Null pointer constants . 115

9. Typing semantics of declarations ��� 117
9.1 External declarations . 117
9.2 Declarations . 118

9.2.1 Declarators . 118
9.2.2 Function prototypes and parameters . 119
9.2.3 Initializations . 119

10. Typing semantics of statements ��� 121
10.1 Statement lists . 121
10.2 Statements . 121

10.2.1 Empty and expression statements . 121

x Contents

10.2.2 Compound statement . 122
10.2.3 Selection statements . 122
10.2.4 Labeled statements . 122
10.2.5 Iteration statements . 123
10.2.6 Jump statements . 123

10.3 Optional expressions . 124

Part IV Dynamic semantics 125

11. Dynamic semantic domains ��� 127
11.1 Domain ordering . 127
11.2 Auxiliary domains . 127
11.3 Types . 128
11.4 Value monad . 130
11.5 Powerdomain monad . 130
11.6 Program state . 131
11.7 Continuation monad . 132
11.8 Resumption monad transformer . 134

11.8.1 Definition . 135
11.8.2 Definition of the isomorphism . 138
11.8.3 Special operations . 144

11.9 Monad for expression semantics . 145
11.10 Environments . 146

11.10.1 Type environments . 146
11.10.2 Member environments . 149
11.10.3 Function prototypes . 149
11.10.4 Function code environments . 150

11.11 Scopes . 150
11.12 Monads for statement semantics . 153
11.13 Label environments . 156
11.14 Auxiliary functions . 158

12. Dynamic semantics of expressions ��� 159
12.1 Dynamic semantic functions and equations . 159
12.2 Primary expressions . 161
12.3 Postfix operators . 161
12.4 Unary operators . 163
12.5 Cast operators . 164
12.6 Binary operators . 164
12.7 Conditional operator . 167
12.8 Assignment operators . 168
12.9 Implicit coercions . 169

Contents xi

13. Dynamic semantics of declarations ��� 171
13.1 External declarations . 171
13.2 Declarations . 173

13.2.1 Declarators . 174
13.2.2 Function prototypes and parameters . 176
13.2.3 Initializations . 177

14. Dynamic semantics of statements ��� 179
14.1 Dynamic functions . 179
14.2 Statement lists . 180
14.3 Statements . 180

14.3.1 Empty and expression statements . 180
14.3.2 Compound statement . 181
14.3.3 Selection statements . 182
14.3.4 Labeled statements . 183
14.3.5 Iteration statements . 183
14.3.6 Jump statements . 185

14.4 Optional expressions . 185

Part V Epilogue 187

15. Implementation ��� 189
15.1 Definition of the problem . 189
15.2 The functional programming paradigm . 192

15.2.1 Standard ML . 192
15.2.2 Haskell and related languages . 194

15.3 The object-oriented paradigm . 198
15.3.1 Untyped version . 199
15.3.2 Type-safe version . 204
15.3.3 Preprocessor . 206
15.3.4 Extensions . 210
15.3.5 Example . 212
15.3.6 Discussion . 213

15.4 Implementation of the proposed semantics for C 214

16. Related work ��� 215
16.1 Semantics of real programming languages . 215
16.2 Formal semantics of C . 216
16.3 The use of monads in denotational semantics . 218
16.4 Implementation of denotational semantics . 219

17. Conclusion ��� 221
17.1 Summary . 221
17.2 Future research . 222
17.3 Closing remarks . 223

xii Contents

Bibliography ��� 226

Index of notation ��� 237

Index of terms ��� 243

Index of functions ��� 249

List of tables

1.1 Research topics addressed in the present thesis, according to ACM CCS 1998. 8

4.1 Description of phrase types. 50

7.1 Summary of typing judgements. 96

11.1 Dynamic semantic domains for various kinds of static types. 129

List of figures

1.1 An abstract interpreter for C. 11

6.1 Example of type environment fixing (simple). 85
6.2 Example of type environment fixing (tricky). 86
6.3 Intended behaviour of type environment updating. 87

7.1 Typing semantics for a simple hypothetical expression language. 94
7.2 Example of non-unique typing results and derivations. 98

15.1 The denotational semantics of PFLC. 191
15.2 A subset of the evaluation rules for the meta-language with De Bruijn indices. . . . 202
15.3 Class hierarchies for domain elements and implementations. 204
15.4 A subset of the evaluation rules for the meta-language with named dummies. 211

17.1 Example of misinterpretation in static semantics. 223

Part I

Prelude

Chapter 1

Introduction

This chapter is an introduction to the present thesis. In Section 1.1 a brief presentation of the C CHAPTER

OVERVIEWprogramming language is attempted, with emphasis on its history and characteristics. Section 1.2
is a non-technical introduction to the semantics of programming languages, biased in favour of the
denotational approach. Section 1.3 presents an overview of this thesis. The objectives, motivation and
possible applications are first discussed, followed by an overview of the methodology that is used and
a summary of the thesis’ contribution. Section 1.4 contains an overview of the related work and the
chapter concludes by presenting the structure of this thesis, in Section 1.5.

1.1 The C programming language

C is a well known and very popular general purpose programming language. It was developed in the
years 1969-1973 at the AT&T Bell Labs as a system implementation language for the Unix operating
system. The father of C is Dennis Ritchie who also developed the first compiler in 1971-1973. A
detailed account of the development of the C language written by Dennis Ritchie himself can be found
in [Ritc93].

The direct ancestor of C is a language called B [John73], designed by Ken Thompson in 1969- ORIGINS OF C

1970 as an implementation language for the DEC PDP-7 computer. B can be viewed as a limitation
of BCPL [Rich79], a language designed by Martin Richards in the mid-1960s mainly as a compiler-
writing tool. The main difference between C and its ancestors is the presence of a non-trivial type
system. BCPL and B are typeless, featuring just one “word” type which represents both data and
“pointers” to data. The introduction of other types in C was necessary in order to provide language
support for characters and floating point numbers, that were supported by emerging hardware in the
early 1970s. In 1973, the core of C as we now know it was complete and a compiler for DEC PDP-11
had been developed by Dennis Ritchie. The language featured integers and characters as base types,
full arrays and pointers, special boolean operators and a powerful preprocessor.

In the years to follow, portability and type safety issues introduced a number of changes in the C
language. Several new types were added to the type system and type casts were introduced. The first
widely available description of the language, the book “The C Programming Language” also known as
“K&R”, appeared in 1978 [Kern78].1 By that time, the kernel of the Unix operating system had been
rewritten in C and both language and compilers gained significantly in confidence. During the 1980s,
the use of the C language spread widely and compilers became available on nearly every machine
architecture and operating system.

1 A second edition incorporating later changes was published ten years later [Kern88]. The “K&R” book served as the
language reference until a formal standard was adopted in 1989.

4 Chapter 1. Introduction

C, as well as both its ancestors B and BCPL, belongs to the family of languages expressing theCHARACTERIS-
TICS traditional procedural programming paradigm, typified by Fortran and Algol 60. It is particularly

oriented towards system programming and its small, concise description allows the development of
simple compilers. C is mainly characterized by its economy of expression, realized by a laconic syntax
as well as a large set of operators and data types, and also by the fact that it provides access to the
inner parts of the computer.

C can be characterized as a medium-level language. On the one hand, it is close to the machine.
The abstractions that it introduces are founded in the concrete data types and operations that are sup-
ported by most conventional computers and, for this reason, programs in C are usually very effective.
On the other hand, these abstractions are at a sufficiently high level to facilitate programming and lay
the grounds for program portability between different machines. Portability is further enhanced by the
fact that C programs rely on library routines for I/O and interaction with the operating system.

According to Dennis Ritchie, the ideas that mostly characterize C and differentiate it from its
ancestors and other contemporary languages are two: the relationship between arrays and pointers
and the syntax of declarations, mimicking the syntax of expressions. However, these are also among
its most frequently criticized features and sources of misinterpretations, not only for the beginner but
even for experienced C programmers.

By 1982 the changes that were introduced to the C language, as a result of adapting to the commonSTANDARD-
IZATION practice, were numerous. Each compiler implemented a slightly different version of C. The first edition

of “K&R” no longer described C in its actual use and, even when it did, it was not precise on a number
of details. In an attempt to standardize the language, the American National Standards Institute (ANSI)
established the X3J11 committee in the summer of 1983. Its goal was “to develop a clear, concise
and unambiguous standard for the C programming language which codifies the common, existing
definition of C and which promotes the portability of user programs across C language environments”.
The committee was cautious and conservative with respect to language extensions. The main change
that it introduced was the use of function prototypes, which was a significant step in the direction of a
stronger type system for C. However, the committee decided to leave the old style as a compromise to
the huge volume of existing software in C.

This process was complete in late 1989 and resulted in the standard document ANS X3.159-
1989 [ANSI89a], which was later adopted by the International Organization for Standardization as
standard ISO/IEC 9899:1990 [ANSI90]. The standard is complemented by a series of other docu-
ments, acting as clarifications [ANSI89b] or corrections [ANSI94]. The flavour of the C language that
is specified in the standard is called ISO C, or usually ANSI C. Since 1990, a review process for the
standard is under way. As a result of this process, a completely revised standard, nicknamed “C9X”,
is expected by the year 1999.

Since its early years of development, C has been used to program a wide area of applications,CURRENT

SITUATION including the biggest part of the Unix operating system. Compilers for C are currently available for
almost any computer system and, although the language still allows the development of non portable
applications, programs in C are generally portable, usually with small modifications. During the last
twenty years, C has been used as the basis for, or at least strongly influenced, the development of
a number of programming languages. Among these one should mention Concurrent C [Geha89],
Objective C [Cox91] and especially C++ [Stro91, Elli90] and Java [Gosl96]. In the current software
industry it could be argued that C and its descendants represent a strong and indisputable status quo.
The standard for C is nowadays accepted as a common basis for the language and is taken as a point
of reference by the developers and the users of implementations and other tools.

1.2. Programming language semantics 5

1.2 Programming language semantics

The study of programming languages invariably distinguishes between two fundamental features: syn- SYNTAX AND

SEMANTICStax and semantics. Syntax refers to the appearance and structure of the well-formed sentences of the
language, including programs themselves. Semantics refers to the meanings of these sentences, which
must be preserved by compilers or other language implementations. The line that separates syntax
from semantics is not always clearly marked. The etymology of the word “semantics” leads to the
ancient Greek language and the verb “ ���������	�
� ” (to mean). The original meaning of the word is the
study of attachment between words and sentences of a language and their meanings.

The syntax of programming languages is usually formally specified. The area of formal syntax
specification has been thoroughly studied and there are currently various standard formalisms for this
purpose. The most widely used is context-free grammars, usually expressed in the Backus Naur Form
(BNF) and its variations. Grammars allow, or even suggest, a direct connection between syntax and
parser implementation and this strong connection is probably the major reason why formal syntax
specification has been developed so much.

On the other hand, programming language semantics is most commonly specified in an informal
way. This is mainly due to the complexity of the task, which becomes even worse considering that
the simplicity of BNF representation can be partly attributed to the fact that the most intricate parts of
syntax specification are “moved to the semantic level”. As opposed to the case of syntax, there is a
lack of standard, widely accepted and widely used methodologies for describing the semantics.

Every person who uses a programming language to develop programs must understand its seman- INFORMAL

SEMANTICStics at some level of abstraction. Programmers usually understand the semantics by means of exam-
ples, intuition and descriptions in natural language. Such semantics descriptions are informal and are
typically based on a set of assumptions about the reader’s knowledge and understanding. Informal
semantic descriptions are inherently ambiguous, as is always the case with natural languages. In the
best case, a programmer’s intuition fills the missing points in the description and leads to the correct
understanding of a language’s semantics. In the worst case, the description is fatally ambiguous or
even misleading and the programmer is prone to misinterpretations, which often lead to programming
errors.

Research in the area of formal specification of programming language semantics started in the FORMAL

SEMANTICS1960s. With the rapid increase in the complexity of high-level programming languages, formal se-
mantics solidly based on mathematical logic systems and precise rules of inference were sought as a
possible way of overcoming ambiguities and enforcing discipline in this field. Since then, the product
of more than three decades of research has been the development and thorough study of numerous
methods and formalisms. An excellent introduction to the field is [Wins93], whereas [Mitc96] pro-
vides a more thorough presentation of methods and mathematical foundations.

For historical reasons, formal semantics are usually classified as following one of three main
approaches:

� Operational semantics: Meanings are sequences of computation steps that result from the pro-
gram’s execution. Structural operational semantics are a more systematic variation. An elemen-
tary reference can be found in [Henn90]

� Denotational semantics: Meanings are mathematical objects, typically functions from inputs to
outputs. This category of semantics explicitly constructs mathematical models of programming
languages. It will be further discussed in the sequel, as it is the approach followed in this thesis.

6 Chapter 1. Introduction

� Axiomatic semantics: Meanings are expressed indirectly in terms of logical propositions stating
properties of the programs. Such an approach is useful because it directly aims to support
program verification. The seminal paper on axiomatic semantics is [Hoar69], whereas a classic
text is [dBak80]. Following this approach, it has been suggested that proofs of correctness be
developed at the same time with programs [Dijk76, Grie81].

It should be noted, however, that these three approaches must not be viewed in opposition to each
other. They are in fact complementary and highly dependent on each other. Each has its uses and
serves best a particular category of applications. Operational and denotational semantics can be used
to specify an interpreter for the language under study, and thus help in defining or refining a language.
Axiomatic semantics are helpful in developing proofs about program properties. Probably the most
significant application of formal semantics is in rapid prototyping, using tools that translate language
specifications to correct compilers or interpreters.

Formalisms sharing properties from more than one of these approaches also exist. Abstract state
machines (formerly known as evolving algebras) are one such formalism, started by Gurevich as an
attempt to bridge the gap between formal models of computation and practical specification meth-
ods [Gure93a, Gure95]. Action Semantics, developed by Mosses and Watt, is a practical framework
for the formal description of programming languages combining features of all three traditional ap-
proaches [Moss92].

Denotational semantics, or the mathematical approach to programming language semantics, is aDENOTA-
TIONAL

SEMANTICS
formalism introduced by Scott and Strachey in the late 1960s. Since then, it has been widely studied by
distinguished researchers and has been used as a method for the semantic analysis, description, evalu-
ation as well as the implementation of various programming languages. The seminal paper on denota-
tional semantics is [Scot71]. Other introductory papers including useful bibliography are [Tenn76]
and [Moss90]. Introductory books presenting in more depth the underlying theory and the tech-
niques that have been developed include [Miln76], [Stoy77], [Gord79], [Alli86] and [Schm86]. An
graduate-level book with more mathematical depth is [Gunt92]. This thesis was strongly influenced
by [Tenn91], an excellent book revealing the connections between syntax and the various flavours of
semantics. The same is accomplished by [Mitc96], focusing mainly on the mathematical foundations
of the various semantic approaches. An overview and survey of the research field is given in [Fior96].

According to the denotational approach, programming language semantics is described by at-
tributing mathematical denotations to programs and program segments. Denotations are typically
high-order functions over appropriate mathematical entities, such as domains whose theory is briefly
presented in Chapter 3. One of the main properties of denotational semantics is compositionality, that
is, the fact that the meaning of a sentence can be obtained by appropriately composing the meanings of
its subparts, as these are determined by syntactic structure. Although researchers have not agreed on a
standard meta-language for expressing denotations and there is considerable variation in the notational
conventions used by various authors, it seems that variations of the � -calculus over domains are very
popular. This is the approach taken in this thesis.

One of the most important drawbacks of classic denotational semantics is lack of modularity.MONADS

Small changes or extensions in a language definition often imply a complete rewrite of its formal se-
mantics. As a consequence, although denotational semantics is an appropriate and elegant formalism
for moderately sized languages, it does not scale up easily to real programming languages.2 Further-

2 Throughout this thesis, the term “real programming languages” stands for high-level programming languages that are
widely used in industry for software development, in contrast to languages that are designed and used in academic laborato-
ries for experimental purposes. Of course, this does not mean that these languages are more real, or in fact any better, than
the others. Quite the contrary is true in many cases.

1.3. Overview of this thesis 7

more, it is not easy to reuse a part of a denotational description of one programming language into
another. One would like to consider various features of programming languages in isolation, so that
their study is easier. However, it should be possible later to put all the pieces together and form a
complex denotational description for the whole programming language. This final composition is the
point where classic denotational semantics fails.

The use of category theory and monads has been proposed as a remedy and has become quite pop-
ular in the denotational semantics community. The intuition behind the use of monads in semantics,
suggested by Moggi, is that computations resulting in values from a domain � can be represented
as elements of a domain ������� , where � is an appropriate monad [Mogg89]. It is also suggested
that programming language features can be studied independently in terms of relatively simple mon-
ads and later glued together to form a complete semantic description for the language. Furthermore,
monads have recently been used as an elegant way of introducing imperative features in functional
programming and many functional languages support them directly.

Monad notation is used in this thesis and it is demonstrated that, as a result, the semantics are
significantly improved in terms of modularity and elegance. A brief introduction to monads, their
applications with respect to denotational semantics, the exact notation used in this thesis and pointers
to useful bibliography on this field are given in Chapter 3. Comprehensive introductions to monads
and their use in denotational semantics can be found in [Mogg90] and [Wadl92].

1.3 Overview of this thesis

The main objective of this thesis is to develop and evaluate a formal description for the semantics of OBJECTIVES

the C programming language. The developed semantics should satisfy the following requirements:

� Accuracy: the formal description should be as close as possible to the informal semantics of
ANSI C, as this is defined in the standard. Most of the formal descriptions of real programming
language semantics that have been suggested in literature are inaccurate, to some extend, either
because of intended simplifications or by mistake. Taking into consideration the complexity
of these languages, one should admit that an inaccurate semantics is useful, as long as the
inaccuracies are clearly documented.

� Completeness: the language described should be as large a subset of ANSI C as possible. In de-
scribing the formal semantics of a real programming language, it is common practice to exclude
complicated aspects of the language which cannot be correctly described in a simple and elegant
way. It is also common to treat some features of the language as syntactic sugar and define them
in terms of other features. The first practice does not produce accurate formal descriptions and
should be avoided as much as possible. The second practice is also avoided in the present thesis
because, although it does not affect the accuracy of the semantics, it often deprives the semantic
description from its direct connection with the syntax of the language.

� Simplicity: the formal description should be kept as simple as possible. The rationale behind
this requirement is that simple formal systems are easier to develop, understand, keep under
control when changes are needed, and (especially) use. This will be better understood after the
applications for such a formal description are presented, later in this section. This requirement
comes in direct conflict with the previous two.

8 Chapter 1. Introduction

Table 1.1: Research topics addressed in the present thesis, according to ACM CCS 1998.

D. SOFTWARE

D.2 SOFTWARE ENGINEERING

D.2.4 Software/Program Verification
� Formal methods

D.3 PROGRAMMING LANGUAGES

D.3.0 General
� Standards

� D.3.1 Formal Definitions and Theory
� Semantics

F. THEORY OF COMPUTATION

F.3 LOGICS AND MEANINGS OF PROGRAMS

F.3.1 Specifying and Verifying and Reasoning about Programs
� F.3.2 Semantics of Programming Languages

� Denotational semantics

F.4 MATHEMATICAL LOGIC AND FORMAL LANGUAGES

F.4.1 Mathematical Logic
� Lambda calculus and related systems

F.4.3 Formal Languages

The first two requirements were considered as the most important throughout this doctoral research.
That is, the developed semantics should be as complete and accurate as possible, with respect to the
standard. Simplicity should be sought, as long as the other two are not affected.

Formal semantics of C and other real programming languages has always been a research topicRESEARCH

TOPIC of great interest both to theoreticians and practitioners, as is documented briefly in Section 1.4 and
in more detail in Chapter 16. According to the ACM Computing Classification System,3 the research
topics that are addressed in the present thesis are shown in Table 1.1. In particular, the main research
topics of this thesis are written in bold characters and marked with the symbol � .

1.3.1 Motivation

A reasonable question that can be asked at this point is whether the formal semantics of C presents aWHY C?

worthwhile object of study. The answer to this is affirmative, from two different perspectives. From a
practical point of view, C is admittedly a widely spread programming language and a formal specifi-
cation for its semantics is potentially very important and useful. On the other hand, from a theoretical
point of view, C is characterized by a number of interesting features whose combination is worthwhile
studying on its own right. As a first example, the presence of side effects in expressions combined
with unspecified order of evaluation inevitably leads to non-determinism, which the standard makes
a remarkable effort to restrain. As a second example, the control structures supported by C include a

3 The 1998 version of the ACM CCS can be found at the URL http://www.acm.org/class/1998/.

1.3. Overview of this thesis 9

variety of selection, iteration and unrestricted jump statements, and give rise to a number of interesting
problems combined with C’s block structure and the declaration of variables in compound statements.

Except for the description of the syntax, which has been specified formally using a grammar in MANIFESTA-
TION OF

PROBLEMS
BNF notation, the rest of the ANSI C standard, has been written in natural language, including the
description of the semantics. This causes a number of ambiguities and problems of interpretation, as
far as the semantics of C is concerned.

The newsgroup comp.std.c is a forum in which issues related to the ANSI C standard and
its interpretation are discussed. In contrast to other newsgroups dealing with the C programming
language, articles posted in comp.std.c are typically characterized by a highly scientific level.
Many distinguished researchers and members of the standardization committee frequently participate
in the discussions, as well as language implementors and experienced programmers. The following
excerpts come from a thread of articles with the subject “On Pointer Arithmetic”, initiated by the
author of this thesis in early January 1997. The first article in the thread was simply asking whether
two small pieces of C code, none of which was overly complicated or out-of-place with common
practice, are conforming with respect to the standard.4

Where in the standard does it say that...

The standard doesn’t say or imply anything like...

The standard does say that... but this does not mean that...

The more I look at it, the more it appears to me that...

My interpretation is that...

The first group of excerpts indirectly reveals some points of confusion about what the standard states
and its interpretation, as expressed by the verbs “imply” and “mean” that are used. The last two
excerpts indicate that the authors recognize ambiguities in the standard and express their personal
interpretations at various levels of certainty.

Hmmm... nice to see someone else make the same “mistake” as I did a while back. The
standard really should be better written if it is not only me who misreads it.

The problem, of course, is that the standard is not as clearly worded as either of us would
like. I have good reasons for favoring my interpretation...

The second group of excerpts expresses their authors’ critical view towards the standard, by recogniz-
ing sources of misinterpretation beyond any doubt.

As far as I can see, your reading is plain distortion of the standard. But then, perfectly
reasonable things have been ruled illegal by the committee anyway... But if that is what
is decided, nothing will convince me that the standard that is in front of me is written in
any variety of English that I am familiar with.

In any case, let us agree to disagree. I will grant you this much: Natural languages
are vague enough that every document in a natural language can be misinterpreted by
someone sufficiently motivated.

Finally, the third group of excerpts takes a more aggressive critical approach, attributing the standard’s
ambiguity to the natural language that is used for its description.

10 Chapter 1. Introduction

With all this in mind, the necessity for a formal description of the semantics of C becomes quiteAPPLICATIONS

apparent. The same could be argued in the case of other real programming languages which usually
lack formal descriptions, the main reason for this being an aversion of the average programmer and
the whole software industry towards formal methods in language specification. The applications of
such a description are briefly summarized in the following:

� It would serve as a precise standard for compiler implementation, specifying a rigid mathemat-
ical model for the language without specifying or restricting the techniques used in implemen-
tations.

� It would provide a basis for reasoning about the correctness of programs.

� It would be useful as user documentation; trained programmers can use it as a language refer-
ence, in order to answer subtle questions about the language.

� It would be a valuable tool for language analysis, design and evaluation; semantic descriptions
can be tuned in order to suggest elegant and efficient implementations.

� It could be used as input to a compiler generator. A relatively outdated survey on semantics-
driven compiler construction is given in [Gaud81], whereas experimental systems for this pur-
pose include SIS [Moss76, Bodw82], MESS [Lee87, Pleb88], PSP [Paul82], CERES [Jone80],
Actress [Brow92], Cantor [Pals92], DML [Pett92]. A more recent approach, based on the use
of monads, is described in [Lian95a, Lian96].

1.3.2 Methodology

The present specification for the semantics of C can be best understood as part of an abstract inter-ABSTRACT

INTERPRETER preter for C programs. Such an interpreter is depicted in Figure 1.1 as a data process. The left part of
the figure is a module diagram of the interpreter. It shows the chain of actions performed by the inter-
preter as well as the data that is processed by these actions. Each action takes as input the result of the
previous action and, after processing it, passes it to the following action. Sometimes, previous results
are also necessary for the processing. The initial piece of data is a source program, written in C, and
the final result is a representation of this program’s meaning, i.e. a description of what the program
does when executed. The right part of the figure gives a small example, illustrating the function of the
interpreter. This example will be discussed in detail gradually, until the end of this section.5

The interpreter consists of the following three layers, represented in Figure 1.1 as big boxes. Each
layer contains a series of actions.

� Syntactic analysis: aims at checking the syntactic validity of the source program and signalling
syntax errors. Syntactically correct programs are transformed to abstract parse trees, which
represent their syntactic structure in detail.

� Semantic analysis: aims at checking the semantic validity of the program, as represented by
the abstract parse tree, and signalling semantic errors, e.g. use of undeclared identifiers or type
mismatches.

4 The discussion did not reach a unanimous verdict, although many opinions were expressed.
5 Notice that several simplifications have been made in this example, since its purpose is only to illustrate the methodology

that is used. Therefore, the semantics attributed to this example is not accurate with respect to the rest of this thesis.

1.3. Overview of this thesis 11

Figure 1.1: An abstract interpreter for C.

Lexical Analysis

Concrete Syntax

Abstract Syntax

Static Semantics

Typing Semantics

Dynamic Semantics

C Program

Meaning

Tokens

Parse Tree

Abstract
Parse Tree

Type
Environment

Typing
Derivation

S
em

an
ti

c
A

n
al

ys
is

S

yn
ta

ct
ic

 A
n

al
ys

is

E
xe

cu
ti

o
n

� Source program:
int main () {

int x;
/* do something with x */
return x++;

}

� Abstract syntax:
Declaration

Specifier

int

Init-Declarator

Declarator Initializer

x None

Expression

Unary Assignment

Identifier ++ (postfix)

x

� Static semantics:
��� ��� int x; �� �	�

� � “x”
� obj � int noqual � �

� Typing semantics:
��� x � normal � obj � int noqual ������ x � lvalue � obj � int noqual ������ x++ � exp � int �

� Dynamic semantics:

� � x++ � � exp � int ��� �
������� � �"!$# � � � x � � lvalue � obj � int % noqual � ���& � � ! � � �' (� & � ! � �
� &*),+ � #

� Execution: aims at describing the meaning of programs, i.e. their execution behaviour. This is
the main part of the interpreter.

Syntactic analysis of C programs presents some difficulties related to the complexity of the lan- SYNTACTIC

ANALYSISguage. However, it is not a very interesting subject from a researcher’s point of view. For this reason,
it is only briefly discussed in the present thesis. A BNF grammar describing the syntax of the lan-
guage is given in Appendix B of the standard. A number of ambiguities are caused by the definition of
typedefs and can be resolved by the use of some sort of symbol table. The layer of syntactic analysis
consists of three actions:

� Lexical analysis: transforms the source program to a sequence of lexical units, also called to-
kens. A formal description of tokens is given in - B.1 of the standard.

� Concrete syntax: checks the syntactic validity of the source program by grouping tokens to-
gether in more complex syntax entities. The BNF grammar describing the concrete syntax of C
that is used for this purpose is taken from - B.2 of the standard. Provided that the source program
is syntactically valid, the result of this action is the parse tree according to the given grammar.

12 Chapter 1. Introduction

� Abstract syntax: simplifies the parse tree by extracting superfluous information and results in an
abstract syntax tree. The abstract syntax of C is formally described in Section 2.2 by means of
a second BNF grammar. Probably the most characteristic example of information that can be
abstracted out results from the grouping of expressions by means of parentheses and operator
precedence rules. The concrete syntax that correctly describes this grouping is enormously more
complicated than the abstract syntax.

Static semantics is the first action in the semantic analysis, which manages the identifiers that areSTATIC

SEMANTICS defined in the source program. It aims at detecting static semantic errors, such as the redefinition
of an identifier in the same scope, as well as associating identifiers with appropriate types or values.
Static semantics is based solely on the abstract syntax. For each syntactically well-formed program
phrase � , its static semantic meaning is denoted by �������� . Static semantic meanings are mathematical
objects. Typically they are type environments, i.e. associations of identifiers to types, or functions
handling type environments.

As an example, consider the simple C program that follows. A part of this program’s abstract
parse tree is shown in the right part of Figure 1.1.

int main () {
int x;
/* do something with x */
return x++;

}

Consider now the syntactically well-formed phrase “int x;”, that is, the declaration in the function’s
body. The static semantic meaning of such declaration is a function that updates the type environment
by declaring an integer variable “x”. If �	� is taken to be the empty type environment, containing no
declarations, then the result of ��� int x; �� applied to � � is an updated environment � which contains a
declaration for “x”:

�
 ��� int x; �� � �

 � “x” �� obj int � noqual � �

The second action in semantic analysis is typing semantics, which manages the types of all pro-TYPING

SEMANTICS gram phrases. It aims at detecting type-mismatch errors, such as assignment to a constant value,
and at associating syntactically well-formed phrases with appropriate phrase types. Such associations
are given by means of typing derivations, that is, formal proofs that phrases are well-typed. Typing
semantics is based not only on the abstract syntax of the program, but also on the static semantic
environments that result from the previous action.

In the same example program, consider now the program phrase “x++” that is part of the function’s
body. Assume also that the static semantic analysis has finished and resulted in the type environment
� that was given above. Under this assumption, it is possible to derive that the phrase “x++” is an
expression that computes an integer value.6 A proof of this is given by the following derivation:

��� x � normal obj int � noqual ���
��� x � lvalue obj int � noqual ���

��� x++ � exp int �
6 One should recall that expressions in C are allowed to generate side effects. This is the reason why the incrementing of

“x” in “x++” does not deserve special mention here.

1.3. Overview of this thesis 13

The notation that is used will be explained in detail in Part III. Two things should be mentioned, how-
ever. The first is that the conclusion of this derivation is the judgement “ ��� x++ � exp int � ” which
states exactly that this phrase is an expression computing an integer value, given the type environment
� . The second is that the derivation makes use of two typing rules, shown as horizontal lines. The first
rule (upper line) states that an integer variable declared in the environment is an l-value designating
an integer object. The second rule (lower line) states that l-values may be dereferenced by accessing
the value that is stored in the designated objects.

Dynamic semantics is the final action in the abstract interpreter, which is not considered a part of DYNAMIC

SEMANTICSsemantic analysis.7 Its primary aim is the definition of a well-typed program’s execution behaviour.
As a useful side effect, run-time errors and other sources of undefined behaviour are detected at the
same time. Dynamic semantics is based on the abstract syntax, the environments that result from
static semantics and the typing derivations that result from typing semantics. For each well-typed
program phrase � of type � , its dynamic semantic meaning is denoted by � � ��� . Such meanings
are also mathematical objects. Typically they are functions describing aspects of the execution of
the corresponding program phrases. The typing derivation for � is important, as the same phrase is
allowed to have different meanings when attributed different types.

Going once more back to the same example, consider again the well-typed program phrase “x++”,
whose type derivation was given above. Assume that we choose direct semantics as the execution
model for expressions: the dynamic semantic meaning of an expression is a function that takes as an
argument the initial program state � and returns two results: the computed value of the expression and
the final program state after the expression’s evaluation. Following this model, the dynamic semantics
for “x++” is given by the following equation:

 x++ � � exp � int � �
 ���
	��� �������
 x � � lvalue � obj � int � noqual ��� ��
���� ���� � � ����� �� ����� ���
Notice that the typing derivation dictates the types that are used for the dynamic semantics of “x++”,
on the one side, and of “x” on the other side of the equation. Just for the sake of clarity, represents
the address of the object designated by the l-value “x”, ��� is the program state after evaluating “x”
and � is the value stored in at the program state ��� . The result of the evaluation is � , and the final
program state is the same as � � , with the value stored in incremented by one.

1.3.3 Contribution

The main contribution of this thesis is a formal description for the semantics of the ANSI C pro- FORMAL

SEMANTICS OF

C
gramming language, following the denotational approach. The importance and possible applications
of such a formal description have been outlined in Section 1.3.1. The developed semantics is satis-
factorily complete and accurate, with respect to the standard, and compares very favourably to other
approaches for the same purpose, as is further discussed in Chapter 16.

Another significant contribution of this thesis is the application of monad notation for the speci- MONADS AND

MONAD

TRANSFORM-
ERS

fication of the semantics of a real programming language. Monads [Mogg89, Wadl92, Wadl94] and
monad transformers [Lian95b, Lian96] have been proposed as a method of improving the modularity

7 Following the terminology used in compilers and other language implementations, analysis primarily focuses on the
extraction of static program properties and error detection. The dynamic semantics, as defined here, correspond to the phase
of code generation.

14 Chapter 1. Introduction

and elegance of classic denotational semantics. Although the former have been much used lately in
functional programming practice, applications of monad notation in the denotational semantics of real
programming languages have not been found in literature. The semantics that is presented in this thesis
makes use of seven monads and a monad transformer, in order to represent different aspects of com-
putations. Most of these monads have already been investigated in literature and are only important
for the simplifications they achieve in the semantics. It should be noted however that standard domain
theory is used and the monads are defined over the category of domains and continuous functions.

The powerdomain monad is used in this thesis in order to allow multiple possible results in com-NON-
DETERMINISM

AND

INTERLEAVING

putations. Several monads have been used in literature for this reason, with the same properties.
Although the monadic properties of the convex powerdomain has already been investigated in liter-
ature, a complete concise definition is given in this thesis. Furthermore, in the developed semantics
execution interleaving is represented by means of the resumption monad transformer, which is defined
in this thesis and whose properties are investigated here. The combination of the resumption monad
transformer with the continuation and powerdomain monads produces interesting results that can be
useful in specifying the semantics of programming languages with non-deterministic features and/or
parallelism.

A significant effort has been made to evaluate the developed semantics and assess its accuracyIMPLEMENTA-
TION and completeness. For this reason, an implementation of the abstract interpreter was developed and

tested, using improvised tests and parts of available test suites for C implementations. The interpreter
implements the semantics directly and was written in Haskell. Standard ML and C++ were also
considered as possible implementation languages. Experimentation with the latter has shown that
object-oriented programming languages with generic types can imitate functional characteristics such
as the lambda notation and high-order functions in a type-safe way. Therefore, they are adequate for
the implementation of denotational semantics, although they are obviously not a natural choice.

1.4 Overview of related work

A detailed reference and comparison of this thesis to related work is given in Chapter 16. However,
for the sake of completeness of this introduction, a brief summary is included here. An overview of
related work in the field of implementing denotational semantics is given in Chapter 15.

The semantics of many popular programming languages have been formally specified in literatureSEMANTICS OF

REAL

LANGUAGES
using various formalisms. However, in most cases it is not the semantics of the whole language that
is specified, but that of a significantly large subset, leaving out usually the most tricky features. Few
real languages have been given formal semantics as part of their definition. Among them one should
mention Scheme [IEEE91, Abel91] and Standard ML [Miln90, Miln91, Kahr93], using denotational
and operational semantics respectively. Denotational semantics have also been used for the formal-
ization of Ada [Pede80], Algol 60 [Bjor82a], Pascal [Bjor82b], and Smalltalk-80 [Wolc87], whereas
operational semantics have been used for Eiffel [Atta93] and Scheme [Hons95]. In a seminal paper, ax-
iomatic semantics have been used to partially describe the semantics of Pascal [Hoar73]. Among other
formalisms, action semantics have been used for Pascal [Moss93] and Standard ML [Watt87], and ab-
stract state machines for Ada [Morr90], Cobol [Vale93], C++ [Wall93, Wall95], Modula-2 [Gure88,
Morr88], Oberon [Kutt97b, Kutt97a], Occam [Gure90, Borg94a, Borg96], Prolog [Borg94b] and
Smalltalk [Blak92].

1.5. Structure of this thesis 15

Monads have been proposed by Moggi as a ground-breaking attempt to structure denotational MONADS

semantics. [Mogg90] In a short time, the idea of monads was popularized by in the functional pro-
gramming community by the work of Wadler [Wadl92]. Since then, related research has focused on
the combination of monads to structure semantic interpreters. Monad transformers, which were also
first proposed by Moggi, have attracted the attention of many researchers. In the work of Liang, Hu-
dak and Jones [Lian95b], monad transformers are demonstrated to successfully modularize semantic
interpreters and the lifting of monad operations is investigated.

Significant research has been conducted recently concerning semantic aspects of the C program- C SEMANTICS

ming language, mainly because of the language’s popularity and its wide applications. In what seems
to be the earliest formal approach, Sethi addresses the semantics of pre-ANSI C, using the denota-
tional approach [Seth80]. In the work of Gurevich and Huggins [Gure93b] a formal semantics for C
is given using the formalism of evolving algebras. A higher-level axiomatic semantics is proposed by
Black and Windley [Blac96], focusing on C’s expression language with side effects under a number
of simplifications. In the work of Cook and Subramanian [Cook94b] a semantics for C is developed in
the theorem prover Nqthm. Cook et al. have also developed a denotational semantics for C based on
temporal logic [Cook94a]. An operational semantics for C has been sketched, in terms of a random
access machine, as a part of the MATHS project in California State University. Finally, in the work
of Norrish [Norr97] a complete operational semantics for C is given using small-step reductions. To
the best of the author’s knowledge, this is the only description of the semantics of C that formalizes
correctly some subtle points of the language, like unspecified order of evaluation and sequence points.
The author knows of no similar denotational approach.

1.5 Structure of this thesis

The structure of this thesis follows largely the methodology that has been outlined in Section 1.3.2.
The thesis is divided in five parts, each of which consists of a number of related chapters.

� Part I: Prelude.

– Chapter 1: Introduction.
The present chapter, an introduction to the thesis.

– Chapter 2: An overview of C.
Attempts to present important aspects of the syntax and semantics of C which affect the
rest of the thesis. This chapter contains the definition of C’s abstract syntax and explains
how the developed semantics deviates from the standard.

– Chapter 3: Mathematical background.
Briefly presents the mathematical background that is used as a basis for this thesis, includ-
ing basic category theory, domain theory, monads and monad transformers.

� Part II: Static semantics.

– Chapter 4: Static semantic domains.
Defines the domains that are used to describe the static semantics of C, together with the
basic operations that can be performed on their elements.

– Chapter 5: Static semantics of declarations.
Defines the static semantics of C declarations, including external declarations and transla-
tion units.

16 Chapter 1. Introduction

– Chapter 6: Static semantics of recursively defined types.
Revises the definition of static semantic domains in Chapter 4 to allow for recursively
defined data types.

� Part III: Typing semantics.

– Chapter 7: Typing judgements.
Introduces to the notions of typing semantics, typing judgements, rules and derivations. It
also discusses issues specific to the typing semantics of C.

– Chapter 8: Typing semantics of expressions.
Defines the typing semantics of C expressions.

– Chapter 9: Typing semantics of declarations.
Defines the typing semantics of C declarations, external declarations and translation units.

– Chapter 10: Typing semantics of statements.
Defines the typing semantics of C statements.

� Part IV: Dynamic semantics.

– Chapter 11: Dynamic semantic domains.
Defines the domains that are used to describe the dynamic semantics of C and the ba-
sic operations on their elements. A number of monads representing different aspects of
computations is also defined here.

– Chapter 12: Dynamic semantics of expressions.
Defines the dynamic semantics of C expressions, including unspecified evaluation order,
unspecified order of side effects and sequence points.

– Chapter 13: Dynamic semantics of declarations.
Defines the dynamic semantics of C declarations, external declarations and translation
units.

– Chapter 14: Dynamic semantics of statements.
Defines the dynamic semantics of all C statements, including jump statements such as
break; and goto.

� Part V: Epilogue.

– Chapter 15: Implementation.
Outlines and the implementation of the developed semantics in Haskell and the obtained
results from its evaluation. It also discusses issues arising in the implementation of deno-
tational descriptions with functional and object-oriented languages.

– Chapter 16: Related work.
Presents related research in the fields of real programming language semantics, the use
of monads and monad transformers in denotational semantics and the formal definition
of C. It also attempts a comparison between this thesis and others’ research, whenever
applicable.

– Chapter 17: Conclusion.
Summarizes the accomplishments and the contribution of this work and discusses direc-
tions for future research.

Chapter 2

An overview of C

“C is quirky, flawed and an enormous success.”
Dennis Ritchie, 1993, in [Ritc93]

This chapter begins with an informal presentation of selected issues related to the syntax and semantics CHAPTER

OVERVIEWof the C programming language, in Section 2.1. The rest of the chapter aims at defining the language
whose semantics is described in this thesis, which differs slightly from ANSI C, and uses for this
purpose a semi-formal approach. Section 2.2 defines the abstract syntax of the language, using the
BNF notation, whereas Section 2.3 summarizes the known deviations between the specified language
and the ANSI C standard in an informal way.

2.1 Selected issues from the syntax and semantics of C

Developing a formal definition for the C programming language is a hard task. The main sources COMPLEXITIES

of complexity are several syntactic and semantic issues particular to C, which fall roughly in the
following three categories:

� Complex type system: The basic data types are machine oriented and the same is true for the
whole philosophy of C’s type system. The connection between pointers and arrays and pointer
arithmetic are also characteristic of C. Incomplete types, recursively defined types and bit-fields
are also sources of complexity.

� Complex control flow: C features complex control structures such as the for and switch state-
ments, and various kinds of jump statements, either restricted (break and continue) or unre-
stricted (goto). An additional complexity is created by the presence of variable declarations in
block statements, in conjunction with jump statements.

� Complex expression evaluation: The presence of side-effects in expressions is the major source
of complexity here. Combined with unspecified evaluation order, this potentially leads to non-
determinism. Expression evaluation is memory-oriented and the standard introduces the mech-
anism of sequence points, in order to enforce portability.

The semantics of C are under-specified by the standard, in an attempt not to overly restrict imple- UNDER-
SPECIFICATIONmentations. There are three types of under-specified behaviour distinguished by the standard:

� Implementation-defined: Behaviour of a correct program construct and correct data which de-
pends on the characteristics of the implementation. The implementation must properly docu-
ment such behaviour.

18 Chapter 2. An overview of C

� Unspecified Behaviour of a correct program construct and correct data, for which the standard
explicitly imposes no requirements. Implementations need not document such behaviour.

� Undefined: Behaviour of a non-portable or incorrect program construct, or of incorrect data. In
such cases, implementations are allowed a wide range of actions, including program termina-
tion, documented or even unpredictable behaviour.

The rest of this section discusses the main characteristics of C. It is structured in three subsections:
declarations, expressions and statements. The same structure is followed throughout this thesis, in the
definition of the semantics. For a thorough introduction to the C programming language, the reader is
referred to [Kern88, Harb95].

2.1.1 Declarations

The syntax of C declarations is probably one of the most characteristic points of the language. Decla-SYNTAX OF

DECLARA-
TIONS

rations are written in a way similar to way that the declared identifiers are used. This can be confusing
at first and frequently requires the use of parentheses. As an example, consider the following two
declarations:

int * f ();
int (*p) ();

The first declares a function “f” which returns a pointer to an integer. The second declares a pointer
“p” to a function returning an integer. One can better understand the effect of the second declaration
by regarding the phrase “*p” as a function returning an integer, as suggested by the parentheses.

The type system of C supports the following types:TYPES

� Character types, that is, the type char, its signed version and its unsigned version, which
are all different.

� Integer types in three sizes (short int, int and long int), each of which can be either
signed or unsigned. Omission of sign information makes the type signed.

� Floating types in three sizes (float, double and long double).
� Enumerated types, declared by using enum.
� Structure types, declared by using struct, containing a sequentially allocated non-empty set

of member objects.
� Union types, declared by using union, containing an overlapping non-empty set of member

objects.
� Array types, containing a contiguously allocated non-empty set of objects with a specific ele-

ment type.
� Function types, describing functions with a specific return type and parameters.
� Pointer types, pointing to objects or functions of a specific referenced type.
� The empty type, specified by void.

Qualified types can be formed by applying the qualifiers const and volatile to an unqualifiedQUALIFIERS

type. For each unqualified type, three qualified versions exist: one qualified with const, one with
volatile and one with const volatile. The use of const declares that an object is constant
and any attempt to modify it leads to undefined behaviour. Objects declared as volatile may be
modified in ways unknown to the implementation, independently of program execution.

2.1. Selected issues from the syntax and semantics of C 19

Array types of unknown size, structure and union types of unknown contents, and the type void INCOMPLETE

TYPESare incomplete types. Except for void, incomplete types can be completed by specifying the unknown
information in a later declaration. In general, it is not possible to declare an object of an incomplete
type. Incomplete types may be used for the recursive definition of structures and unions, as discussed
in Chapter 6.

Declared objects may be initialized as part of their declarations by expressions of an appropriate INITIALIZA-
TIONtype. Special syntax is used for the initialization of arrays, structures and unions, requiring lists of

initializers enclosed in braces. Initialization of objects is performed in the order that the initializers
appear in the program source. In general, the initial values of objects that are not explicitly initialized
are undefined.

C supports two kinds of identifiers which denote types. Tags can be used to describe structures, TAGS AND

TYPEDEFSunions and enumerations. They must always be used in conjunction with the keywords struct,
union and enum. On the other hand, identifiers declared by using typedef may denote any kind
of type. The syntax is the same as for the declaration of normal identifiers.

2.1.2 Expressions

In general, expressions are sequences of operands and operators. An expression may specify the EXPRESSIONS

AND SIDE

EFFECTS
computation of a value, designate an object or a function, generate side-effects, or combine any of
the previous. Expressions that designate objects are called l-values and expressions that designate
functions are called function designators. A side effect is a change in the execution environment, such
as the modification of an object’s value or the access to an object declared as volatile.

The standard defines the semantics of C in terms of an abstract machine. It is not required that im- SEQUENCE

POINTSplementations behave exactly as the abstract machine does and, for example, side effects need not take
place at the same time when they are generated. However, at certain specified points during program
execution, called sequence points, all side effects from previous evaluations must be complete and no
side effects of subsequent evaluations must have taken place. The standard also forbids modification
of an object more than once between the previous and the next sequence point and specifies that, in
this case, the object’s prior value may only be accessed to determine its new contents.

In general, the order in which subexpressions are evaluated and the order in which side effects take EVALUATION

ORDERplace are unspecified by the standard. Evaluation order is affected by the precedence and associativity
of operators, as well as the use of parentheses, but not completely determined by these factors.

C supports a large number of operators. Among them, the most characteristic of the language are OPERATORS

the pointer reference and dereference unary operators (& and *), the prefix and postfix unary assign-
ments (++ and --), the composite binary assignment operators (e.g. +=), the bitwise manipulation
operators, the logical short-circuit operators (&& and ||), the comma operator and the ternary condi-
tional operator ?:.

2.1.3 Statements

The omission of an assignment statement from C is compromised by the presence of the expression EXPRESSION

AND

COMPOUND

STATEMENTS

statement and the fact that side effects can be generated by expressions. Compound statements may
be used in order to group statements in blocks and may contain declarations of local objects. Such
objects are allocated each time program execution enters the block and are destroyed when it leaves

20 Chapter 2. An overview of C

the block, regardless of how the block is entered or leaved. However, object initializations only take
place when the block is normally entered.

The selection statements of C are if (with an optional else clause) and switch. The second isSELECTION

STATEMENTS controlled by an integral expression. In its body, the labels case and default may be defined and
the break statement may be used to interrupt execution of the body.

Probably the most characteristic statement of C is the for statement, with a rather peculiar syntax.ITERATION

STATEMENTS Other iteration statements are while and do. The break statement can be used for the interruption
of an iteration statement, whereas the continue statement can be used for starting a new iteration.

C allows unrestricted jumps in the body of a function, by means of the goto statement in con-UNRE-
STRICTED

JUMPS
junction with labeled statements.1 The use of a goto statement potentially causes execution to leave
one or more nested blocks and enter one or more other nested blocks.

The return statement is used for determining a value that is returned from a function. If theRETURN

STATEMENT function’s return type is not void and the return statement is not followed by an expression, the
returned value is undefined and must not be used.

2.2 Abstract syntax

A context-free grammar for the concrete syntax of the C programming language is given in AppendixNEED FOR AN

ABSTRACT

SYNTAX
B of the ANSI C standard, using a BNF-like notation. The grammar contains a number of ambiguities,
mainly caused by the definition of typedefs and other context-sensitive features of the language. All
these ambiguities are resolved in implementations by using appropriate symbol tables. However, the
concrete syntax produces parse trees which contain redundant information and, for this reason, are
not appropriate for the specification of program semantics. A more abstract syntax for C is defined in
this section by means of a context-free grammar in BNF notation. Although the same ambiguities are
present in the abstract syntax grammar, the produced parse trees are greatly simplified and, therefore,
more manageable.

2.2.1 Declarations

External declarations are declarations that appear outside any function and therefore have file scope.EXTERNAL

DECLARA-
TIONS

A translation unit is a sequence of one or more external declarations. Each external declaration can in
be either a normal declaration or a function definition.

�
translation-unit ��� � external-declaration-list

�
external-declaration-list ��� � external-declaration � external-declaration external-declaration-list

�
external-declaration ��� � declaration� declaration-specifiers declarator � declaration-list statement-list

�

A declaration list may contain zero or more declarations. Each declaration consists of a storageDECLARA-
TIONS class specifier, a type qualifier, a type specifier and a list of declarations with possible initializations.

The first two are optional.

1 Non-local jumps are supported by the standard library of C.

2.2. Abstract syntax 21

�
declaration-list ��� ��� � declaration declaration-list

�
declaration ��� � declaration-specifiers init-declarator-list ;

�
declaration-specifiers ��� � storage-class-specifier type-qualifier type-specifier

The storage class specifiers defined in the C standard are typedef, extern, static, auto and register. SPECIFIERS

AND

QUALIFIERS
In this thesis however, only typedef and the absence of a storage class specifier are allowed, as stated
by deviation D-5 in Section 2.3. The latter is equivalent to the standard’s auto specifier. Allowed type
qualifiers are const and volatile, whereas type specifiers range over a wide variety of types.

�
storage-class-specifier ��� ��� � typedef

�
type-qualifier ��� ��� � const � volatile � const volatile

�
type-specifier ��� � void � char � signed char � unsigned char� short int � unsigned short int � int � unsigned int� long int � unsigned long int � float � double � long double� struct-specifier � union-specifier � enum-specifier � typedef-name

A list of declarators consists of zero or more declarators, each of which may be followed by an DECLARATORS

AND INITIAL-
IZATION

initializer. Initializers are expressions or bracketed lists of initializers.
�

init-declarator-list ��� ��� � init-declarator init-declarator-list
�

init-declarator ��� � declarator � declarator = initializer
�

initializer ��� � expression � � initializer-list
�

�
initializer-list ��� � initializer � initializer , initializer-list

Structure and union specifiers contain non-empty lists of member declarations. Each such decla- STRUCTURES,
UNIONS AND

ENUMERA-
TIONS

ration is similar to a normal declaration, with the absence of storage class specifiers and initializers.
Furthermore, bit-fields may be defined as members. Enumerations are defined as non-empty lists of
elements, possibly followed by their denoted values.

�
struct-specifier ��� � struct I � struct-declaration-list

�
� struct � struct-declaration-list

�
� struct I

�
union-specifier ��� � union I � struct-declaration-list

�
� union � struct-declaration-list

�
� union I

�
struct-declaration-list ��� � struct-declaration � struct-declaration struct-declaration-list

�
struct-declaration ��� � struct-specifiers struct-declarator-list ;

�
struct-specifiers ��� � type-qualifier type-specifier

�
struct-declarator-list ��� � struct-declarator � struct-declarator struct-declarator-list

�
struct-declarator ��� � declarator � declarator : constant-expression

�
enum-specifier ��� � enum I � enumerator-list

� � enum � enumerator-list
� � enum I

�
enumerator-list ��� � enumerator � enumerator enumerator-list

�
enumerator ��� � I � I = constant-expression

22 Chapter 2. An overview of C

Declarators may denote ordinary identifiers, arrays of known or unknown size, identifiers cor-DECLARATORS

responding to functions or pointers. Note that function prototypes are always required in function
declarators, as stated by deviation D-3 in Section 2.3. Parameter type lists consist of zero or more
parameter declarations, optionally followed by an ellipsis.2 Parameter declarations do not necessarily
name the declared parameters, as shown by the use of abstract declarators.

�
declarator ��� � I � declarator [constant-expression] � declarator []� declarator (parameter-type-list) � * type-qualifier declarator

�
parameter-type-list ��� ��� � ... � parameter-declaration parameter-type-list

�
parameter-declaration ��� � declaration-specifiers declarator� declaration-specifiers abstract-declarator

�
abstract-declarator ��� ��� � abstract-declarator [constant-expression] � abstract-declarator []� abstract-declarator (parameter-type-list)� * type-qualifier abstract-declarator

Type synonyms defined by using the typedef storage class specifier are just identifiers. A full typeTYPE NAMES

name consists of an optional type qualifier, a type specifier and an abstract declarator.
�

typedef-name ��� � I
�

type-name ��� � type-qualifier type-specifier abstract-declarator

2.2.2 Expressions

Among all C program phrases, expressions are the most simplified by the use of an abstract syntax.
Primary expressions are identifiers, constants or string literals. Postfix expressions include array sub-
scripts, function calls and structure or union member dereferences. The actual arguments to a function
call are a list of zero or more expressions. Prefix expressions allow the use of unary operators, unary
assignments and type casts. Binary expressions, binary assignments and the conditional operator com-
plete the picture. The non-terminal for constant expressions, equivalent to that for expressions, is only
kept for the sake of clarity.

�
expression ��� � I � n � f � c � s � expression [expression] � expression (arguments)� expression . I � expression -> I � sizeof expression � sizeof (type-name)� unary-operator expression � (type-name) expression� expression binary-operator expression � unary-assignment expression� expression binary-assignment expression � expression ? expression : expression

�
arguments ��� ��� � expression , arguments

�
constant-expression ��� � expression

The large variety of operators is one of C’s most characteristic features. Operators are distin-OPERATORS

guished on the one hand by their arity (unary, binary or ternary) and on the other hand in normal
operators and assignment operators.

�
unary-operator ��� � & � * � + � - ��� � !

�
binary-operator ��� � * � / � % � + � - � << � >> � < � > � <= � >= � == � !=� & � ˆ � | � && � || � ,

�
unary-assignment ��� � ++ (prefix) � ++ (postfix) � -- (prefix) � -- (postfix)

�
binary-assignment ��� � = � *= � /= � %= � += � -= � <<= � >>= � &= � ˆ= � |=

2 See also deviation D-10 in Section 2.3.

2.3. Deviations from the standard 23

2.2.3 Statements

The abstract syntax for statements is also relatively simple. A first thing to notice is the presence of a
unique scope identifier id in block statements, which may be a simple non-zero natural number. Such
identifiers can be easily generated automatically in the transition from concrete to abstract syntax and
greatly simplify the definition of dynamic semantics, as will be seen in Part IV. Notice also the two
variations for statements if and return.

�
statement-list ��� ��� � statement statement-list

�
statement ��� � ; � expression ; � � id declaration-list statement-list

�
� if (expression) statement � if (expression) statement else statement� switch (expression) statement� case constant-expression : statement � default : statement� while (expression) statement � do statement while (expression) ;� for (expression-optional ; expression-optional ; expression-optional) statement� continue ; � break ; � return ; � return expression ;� I : statement � goto I ;

�
expression-optional ��� ��� � expression

2.3 Deviations from the standard

The task of formally specifying the semantics of the C programming language is a very hard one, due REASONS FOR

DEVIATIONSto the high complexity of the language itself. A complete and accurate semantics, with respect to the
standard, would inevitably be very complex if not altogether infeasible. In the developed semantics,
several deviations from the standard have been allowed, thus reducing the value of the semantics in
terms of completeness, accuracy or both. The author believes that these deviations only affect the
language slightly and justifies their existence with one of the following two arguments:

1. In the case of some aspects of C that are not supported by the developed semantics, the in-
crease in complexity of the semantics that would be required in order to accommodate them is
disproportionate to the benefits from having them.

2. Some other features are considered as obsolescent by the current standard and are only sup-
ported for compatibility with old fashioned programming practice. Such features will probably
be omitted in the forthcoming revised version of the standard and, for this reason, they were not
included in the developed semantics if their inclusion meant a significant increase in complexity.

To the best of the author’s knowledge, the deviations between the developed semantics and (the
author’s interpretation of) the ANSI C standard are the following. The most important deviations are
mentioned in the beginning of the list, but this order of importance is only subjective.

Deviation D-1. The C programs whose semantics is defined consist of a single translation unit. There- SINGLE

TRANSLATION

UNIT
fore, the notion of a program in this thesis is equivalent to that of a translation unit. The author
believes that this restriction does not impose significant problems, since programs spanning
through multiple translation units can be easily concatenated into a single unit by a relatively
simple preprocessor. The use of function libraries presents a problem here. However, on condi-
tion that a library’s functions are themselves written in C the same concatenation process may be

24 Chapter 2. An overview of C

assumed.3 Following a different approach, the static and dynamic semantics of library functions
can be externally specified.

Deviation D-2. Identifiers declared in the file scope, i.e. outside function definitions, are treated inFILE SCOPE

the same way as the others. That is, file scope is treated as an external block scope. This is
consistent with deviation D-1. As a side effect however, no implicit initialization of external
objects takes place, as specified in - 6.7.2 of the standard.

Deviation D-3. Function prototypes are required to exist for all called functions and the actual argu-ENFORCED

FUNCTION

PROTOTYPES
ments are required to comply with the prototypes. This is a step towards a more strongly-typed
C, which will probably be taken in the revised standard.

Deviation D-4. No identifiers other than statement labels may be declared as a consequence of pro-DECLARATION

OF

IDENTIFIERS
cessing expressions or statements. That is, the static environment may only change as a result
of processing declarations, excluding expressions that appear in initializers. The standard al-
lows the declaration of identifiers in two more cases. First, an identifier of function type is
indirectly declared whenever a call to an unknown function is encountered. In the developed
semantics, this would also violate what has been discussed in deviation D-3. Second, the dec-
laration of tags is possible in type names which may be present in expressions, as is the case of
“sizeof(struct tag � int whatever;

�
)”. The author believes that such declara-

tions should not be allowed and regards this deviation more as a correction to the standard than
as an omission.

Deviation D-5. Storage specifiers other than typedef are not supported. The cases of auto and externOMITTED

STORAGE

SPECIFIERS
could be incorporated rather easily, but were left out as a side effect from deviation D-1, since
they are not very useful in programs consisting of a single translation unit. The omission of
static is the most important consequence of this deviation. Static variables may of course be
preprocessed out, but the author believes that a solution integrated in the semantics should be
investigated. Finally, the increase in complexity required by the inclusion of register is not
clear. This specifier offers little to the programmer and it has been argued that a good optimizing
implementation of C should be able to determine which variables should be allocated to registers
without the programmer’s help.

Deviation D-6. Initializers must be fully bracketed according to the types of the initialized objects, inFULLY

BRACKETED

INITIALIZERS
contrast to the less strict bracketing that is allowed in - 6.5.7 of the standard. String literals are
however allowed as initializers for character arrays.

Deviation D-7. The types int and signed int are always considered identical, even in the case of bit-BIT-FIELD

TYPES fields. This could be corrected with a number of changes in the abstract syntax, separating the
declaration of bit-field members from that of ordinary members.

Deviation D-8. The use of the typedef storage class specifier in a parameter declaration, which isTYPEDEF IN

PARAMETERS disallowed by the standard, is simply ignored by the developed semantics. The use of a storage
class specifier in parameter declarations could have been altogether disallowed, since the only
case allowed by the standard is register. This should be corrected.

3 Obviously, the specification of functions written in assembly or other languages is not a responsibility of a formal
semantics for C.

2.3. Deviations from the standard 25

Deviation D-9. The use of the typedef storage class specifier is allowed in function definitions, while TYPEDEF IN

FUNCTIONSit is disallowed by the standard. In this case, the developed semantics simply ignores the func-
tion’s body. This should also be corrected.

Deviation D-10. The use of ellipsis in function prototypes does not require the presence of other USE OF

ELLIPSISnamed parameters, e.g. “int f (...);” which is not allowed by the standard is allowed in
the developed semantics. The author considered unnecessary to comply to this requirement of
the standard, which is imposed solely because of implementation practice.

Deviation D-11. In consistence with deviation D-1, two structure or union types are considered to be STRUCTURE

AND UNION

TYPES
compatible by the developed semantics only if they are the same type. The standard also allows
structure or union types defined in different translation units to be compatible if they agree in
the order and types of members.

It should be noted also, more as a clarification than as a deviation from the standard, that the de-
veloped semantics covers only the ANSI C language. It is not the author’s intention to specify the
semantics of C’s standard library, which is also informally defined in the C standard. The omission
of everything included in the standard library allows the developed semantics to ignore sources of
complexity originating from an underlying operating system, such as input/output devices, file man-
agement, dynamic allocation of memory, signals and interrupts, etc.

Chapter 3

Mathematical background

This chapter attempts to define the mathematical background that is required for understanding this CHAPTER

OVERVIEWthesis. A brief introduction to category theory is presented in Section 3.1. Monads and monad trans-
formers are introduced in Section 3.2. In Section 3.3 an overview of domain theory is given and the
chapter concludes in Section 3.4 with a definition of the meta-language for denotational semantics that
is used in this thesis. Throughout this chapter, only definitions and useful theorems are stated. The
reader is referred to the related literature for a more informative introduction and the proofs of the
theorems.

3.1 Category theory

Category theory was developed in an attempt to unify simple abstract concepts that were applicable
in many branches of mathematics. Excellent introductions to category theory and its application in
Computer Science can be found in [Pier90, Gogu91, Pier91, Aspe91, Barr96].

3.1.1 Basic definitions

Definition 3.1. A category
�

is a collection of objects and a collection of arrows1 satisfying the CATEGORIES

following properties:
� For each arrow � there is a domain object dom ��� � and a codomain object codom ��� � , and by

writing ����� ��� it is indicated that �
 dom ��� � and �
 codom ��� � .
� For every pair of arrows ����� ��� and 	 ��� ��
 there is a composite arrow 	������� ��
 .
� Composition of arrows is associative, i.e. for all arrows ����� ��� , 	 ��� ��
 and � ��
 ��� it

is ��� ��	���� �
 ������	 ���� .

� For each object � there is an identityarrow!identity arrow id � ��� ��� .

� Identity arrows are identities for arrow composition, i.e. for all arrows ����� ��� it is ��� id �

id ����
�� .

Definition 3.2. An object � of category
�

is initial if for every object � there is exactly one arrow
����� ��� . Dually, an object � is terminal if for every object � there is exactly one arrow ����� ��� .

Definition 3.3. Two objects � and � of category
�

are isomorphic if there are arrows ����� ��� and
	 ��� ��� such that ����	
 id � and 	���
 id � . Arrows � and 	 are called isomorphisms.

1 Arrows are often called morphisms in literature.

28 Chapter 3. Mathematical background

Properties of categories are commonly presented using commuting diagrams. A diagram is a graphCOMMUTING

DIAGRAMS whose nodes are objects and whose edges are arrows. A diagram commutes if for every pair of nodes
and for every pair of paths connecting these two nodes the composition of arrows along the first path is
equal to the composition of arrows along the second. An example of a commuting diagram, implying
that 	���
�� , is shown below.

 � ���
� � � � �� �

� �

	

3.1.2 Functors and natural transformations

Definition 3.4. A functor � from category
�

to category � , written as � � � � � , is a pair ofFUNCTORS

mappings. Every object � in
�

is mapped to an object � � � � in � and every arrow � ��� � � in�
is mapped to an arrow � ��� � �	� � � � �
� � � � in � . Moreoever, the following properties must be

satisfied:

� � � id � �
 id �� ��� for all objects � in
�

.

� � ��	���� �
�� ��	 ����� ��� � for all arrows ����� ��� and 	 ��� ��
 in
�

.

Definition 3.5. An endofunctor on category
�

is a functor � � � � �
.

Definition 3.6. If � � � � � and � ��� � � are functors, then their composition is a functor
� ��� � � ��� . It is defined by taking ��� ����� � � �
������ � � � � and ��� ��� � ��� �
�� ��� ��� � � .
Definition 3.7. For every category

�
, an identity functor id � � � � �

can be defined by taking
id � � � �
 � and id � ��� �
 � .

Note that if � � � � �
is an endofunctor and � is a positive natural number, the notation ��� �� � �

can be used for the composition of � with itself � times. The notation can be extended so that
���
 id � .
Theorem 3.1. Functors preserve isomorphisms.

Theorem 3.2. Identity functors are identities for functor composition, that is, if � � � � � is a
functor, then � � id �
 id ��!�
"�

3.1. Category theory 29

Definition 3.8. If � � � � � and � � � � � are functors, then a natural transformation � between NATURAL

TRANSFORMA-
TIONS

� and � , written as � � � �� � is a family of arrows in � . In this family, an arrow � � � � � � � � � � � �
in � is defined for every object � in

�
. Moreover, the following diagram must commute:

� � � � �
� � � ��� � �

�

�

� � � � �

� ��� �
� � � � � � � ��

����� �

Definition 3.9. If � � � � � , � � � � � and
� � � � � are functors, � � � �� � and � � � �� �

are natural transformations, then the composition � � � �� �� � is a natural transformation. It is
defined by taking ��� � � ���
�� � � � �

Definition 3.10. If � � � � � , � � � � � ,
� �	� � � and � � � � � are functors, � � � �� �

and � � � ���� are natural transformations, then the compositions � � � � � ��� ���� ��� and� � � � � � � �� � � � are natural transformations. They are defined by taking ��� � � � �
	� �� ���
and � � � � ���
 � � � � � .

Definition 3.11. If
�

is a category and � � � � �
is an endofunctor on

�
, then a � -algebra is an � -ALGEBRAS

arrow ��� � � � � ��� .

Definition 3.12. If
�

is a category, � � � � �
is an endofunctor on

�
, and � � � � � � � � and

	 � � � � � � � are � -algebras, then a � -homomorphism between � and 	 is an arrow ��� ��� � in
�

such that the following diagram commutes:

� � � � � ��� � � � � � �

�

�

� � � � �

	

Theorem 3.3. � -algebras and � -homomorphisms form a category.

Definition 3.13. An initial � -algebra is an initial object of the category of Theorem 3.3.

Theorem 3.4. If ��� � � � � ��� is an initial � -algebra, then � is an isomorphism.

3.1.3 Adjunctions

Definition 3.14. If � � � � � and
 � � � �
are functors, then � is left adjoint to
 and
 is

right adjoint to � if there is a natural transformation � � id � ���
 � � such that for any objects � in�
and � in � and any arrow � � ����
�� � � in

�
, there is a unique arrow 	�� � � � � � � such that the

following diagram commutes.

30 Chapter 3. Mathematical background

�
� � �
���� � � � � � � � �� � � � �� �

 � � ��

���	 �

� �

	

Left and right adjoints are written as ���
 and the triple � � �
 � � � constitutes an adjunction. The
transformation � is called the unit of the adjunction.

Theorem 3.5. If � � � � � and
 � � � �
are functors such that ���
 , then there is a

natural transformation � �	� �
 �� id such that for any objects � in
�

and � in � and any arrow
	 � � � � � ��� , there is a unique arrow � ��� �
 � � � in

�
such that the following diagram commutes.

� � � � � � � � � �
	
�

�� � ��
�

� �
�� � � �

� ��� �
� � � � �

The transformation � is called the counit of the adjunction.

3.1.4 Products and sums

Definition 3.15. Let � and � be two objects in a category
�

. Then, a product of � and � is an object

�� � together with two arrows fst �
 � � and snd �
 � � such that, for any object ��� � and
arrows ��� ��� ��� and �
	 ��� ��� , there is a unique arrow ����� ��
 making the following diagram
commute:

�

��
�
�
�
�

���
� � � � �

�
	
�

��
fst

�

�
snd

� �

Such a product object is commonly written as ��� � and the unique arrow � is written as � ��� � �
	 � .
Definition 3.16. Let � and � be two objects in a category

�
. Then, a sum of � and � is an object

�� � together with two arrows inl � � �
 and inr � � �
 such that, for any object ��� � and
arrows ��� ��� ��� and �
	 ��� ��� , there is a unique arrow ����
 ��� making the following diagram
commute:

� inl �
 inr �� � � � ���� � ��
�
�
�
�

�
	

�

�

�
Such a sum object is commonly written as � � � and the unique arrow � is written as ��� � �
	 � .

3.2. Monads and monad transformers 31

Definition 3.17. It is easy to generalize binary products and sums, as defined in Definition 3.15 and
Definition 3.16, to finite products and sums of the form � � � � 	 � � � � � � � and � � � � 	 � � � � � � �
respectively. For �
 �

the product can be any terminal object and the sum can be any initial object
of the category. Furthermore, for �
 � both product and sum are isomorphic to � � .

Theorem 3.6. Products and sums are unique up to isomorphism.

3.2 Monads and monad transformers

The notion of monad, also called triple, is not new in the context of category theory. In Computer Sci-
ence, monads became very popular in the 1990s. The categorical properties of monads are discussed
in most books on category theory, e.g. in [Barr96]. For a comprehensive introductions to monads and
their use in denotational semantics the user is referred to [Mogg90]. A somehow different approach
to the definition of monads is found in [Wadl92], which expresses the current practice of monads in
functional programming. The two approaches are equivalent and they are both used in this thesis.
The categorical approach is used for the definition of monads, since it is much more elegant, and the
functional approach is used in the meta-language for describing semantics and in the rest of the thesis.

3.2.1 The categorical approach

Definition 3.18. A monad on a category
�

is a triple ��� � � � � � , where � � � � �
is an endofunctor, MONADS

� � id � ���� and � ��� 	 ���� are natural transformations. For all objects � in
�

, the following
diagrams must commute.

� � � �
��� � ��� � � 	 � � � � � � � � � � � �� � � � �id � � ��� � ��

�
�
�
�

id � � ���
� � � ��

� �

�
�
� � � � � � � � � � 	 � � �

� 	 � � �

� � � ���
� � � � � � � �

� �

�

The transformation � is called the unit of the monad, whereas the transformation � is called the
multiplication or join.

The commutativity of these two diagrams is equivalent to the following three equations, commonly
called the three monad laws:

� � � � � � ���
 id � � ��� (1st Monad Law)
� � �	� � � � �
 id � � ��� (2nd Monad Law)
� � �	� � � � �
 � � � ��� � ��� (3rd Monad Law)

Theorem 3.7. If � � � �
� and
 � � � �
are functors such that � �
 , with � � id � ���
 � �

and � � � �
 �� id being the unit and counit of the adjunction, then the triple �
 ��� � � �
 � � ��� �
is a monad on

�
. This monad is called the induced monad of the adjunction.

32 Chapter 3. Mathematical background

Definition 3.19. If ��� � � � � � and ��� � � � � � � � � are monads on a category
�

, then a monad morphismMONAD

MORPHISMS is a natural transformation � � � �� � � such that for all objects � in
�

the following two diagrams
commute:

�
� � � � � � �� � � � �� �� �

� � � � ��
� �

� 	 � � � � � � ��� � � � � � � � � �

�� � � � � � �
� �

� � � � � � � � � � � ��
� ��� � �

� � ! � ��� � � � 	 � � ��
� � ��� � �

� � � � � � �� � � �� � � � � � �

� ��
� � � � �

In the right diagram, the small square always commutes by the fact that � is a natural transformation.

Definition 3.20. If
�

is a category, then it is possible to define a monad category ���	� � � � by taking
as objects the monads on

�
and as arrows the monad morphisms on

�
.

Definition 3.21. If
�

is a category and ���	� � � � the induced monad category, then a monad trans-MONAD

TRANSFORM-
ERS

former on
�

is an endofunctor
 � ���	� � � � � ���	� � � � .2

3.2.2 The functional approach

The alternative approach, which has become very popular in the functional programming community,ALTERNATIVE

DEFINITION defines a monad on a category
�

as a triple ��� � unit � � bind � � . In this triple, � is a function between
objects of

�
, unit � � � ��� � � � is a family of arrows in

�
and bind � is a function between arrows

on
�

. If � and � are objects in
�

and ����� � � � � � is an arrow in
�

, then bind � ��� � � � � � � � � � .
Furthermore, the following properties must be satisfied:

bind � unit �
 id (Alternative 1st Monad Law)

� bind � � � � unit �
 � (Alternative 2nd Monad Law)

� bind � � � � � bind � 	 �
 bind � � � bind � � � ��	 � (Alternative 3rd Monad Law)

It can be shown that the two approaches are equivalent. The equations relating unit � and bind � inEQUIVALENCE

the alternative definition to � , � and the arrow mapping of endofunctor � in the original definition are
given below, in both directions.3 It can also be shown that the two sets of monad laws are equivalent.

2 Many options for the definition of monad transformers have been suggested in literature. Apart from the definition used
here as endofunctors on ���������� , other possible definitions are as functions between objects in ���������� , as premonads on���������� (i.e. endofunctors with a unit), and as monads on ���������� .

3 These equations assume that a number of naturality properties, omitted from the alternative definition, are satisfied.
Without this assumption, the two definitions are not equivalent.

3.3. Domain theory 33

unit �
 �

bind � �
 � � � ��� �
�
 unit �
�
 bind � id
� ��� �
 bind � � unit � ��� �

In a category where objects are sets (or similar mathematical entities) and arrows are functions SET-ORIENTED

BINDbetween sets, then unit � ��� � � ��� � and bind � � ��� � � ��� � � � � ��� � � � ��� � can be
regarded as a polymorphic functions, where � and � are arbitrary sets. Then, by swapping the order of
the arguments of bind � and by making it an infix operator ��� � � � � ��� � � ��� � � ��� � � � � ��� �
the popular form of the bind operator as used in practice today is obtained. This is the notation for
monads that is used in the following chapters. Furthermore, the notation lift ����� ! � � ��� � � � � ��� �
is sometimes used for the polymorphic functions representing monad morphisms.

3.3 Domain theory

The theory of domains was established by Scott and Strachey, in order to provide appropriate math-
ematical spaces on which to define the denotational semantics of programming languages. Introduc-
tions of various sizes and levels can be found in [Scot71, Scot82, Gunt90, Gunt92]. Various kinds of
domains are commonly used in denotational semantics, the majority of them based on complete partial
orders (cpo’s). The variation used in this thesis is one of the possible options.

3.3.1 Preliminaries

Definition 3.22. A partial order, or poset, is a set 	 together with a binary relation
 that is reflexive,
anti-symmetric and transitive.

Definition 3.23. A subset ���	 of a poset 	 is bounded if there is a ����	 such that ��
 � for all
� � � . In this case, � is an upper bound of � .

Definition 3.24. The least upper bound of a subset ����	 , written as � � , is an upper bound of �
such that, � ��
 � for all upper bounds � of � .4

Definition 3.25. A subset ���	 of a poset 	 is directed if every finite subset ��� � has an upper
bound ��� � .

Definition 3.26. If 	 is a poset and ����	 is one of its elements, then the set � � of elements below
� in 	 is defined as � �
 � � ��	 � ��
 � � .

Definition 3.27. A subset ����	 of a poset 	 is downward closed if � ��� � for every element
��� � .

Definition 3.28. Let 	 be a poset. An ideal over 	 is a directed and downward closed subset of 	 .

Definition 3.29. A poset 	 is complete if every directed subset ����	 has a least upper bound. A
complete partial order is also called a cpo.

4 The notation
�����

is used as an abbreviation of � � � � � .

34 Chapter 3. Mathematical background

Definition 3.30. A non-empty cpo 	 is bounded complete if every bounded subset � ��	 has a
least upper bound � � ��	 .

Definition 3.31. An element � � 	 of a cpo 	 is compact if for all directed subsets � � 	 such
that �
�� � there is an element � � � such that �
 � . By

� ��	 � we denote the set of compact
elements of 	 .

Definition 3.32. A cpo 	 is algebraic if for every � ��	 the set �
 � � � ��	 � �
 � � is
directed and � �
 � .

Definition 3.33. Let 	 be a poset. A subset � � 	 is normal in 	 , written as � � 	 if for every
����	 the set � � � ����� of elements below � in � is directed.

Definition 3.34. An algebraic cpo 	 is bifinite if for any finite set � � � ��	 � there is a finite set �
such that ����� � � ��	 � .

Theorem 3.8. A bounded complete algebraic cpo is bifinite.

Definition 3.35. Let 	 and � be cpo’s. A pair of continuous functions � � �	� � such that � � 	 �
�
and � ��� � 	 is called an embedding-projection pair, or ep-pair, if � � �
 id � and �����
 id � .

Definition 3.36. Let 	 and � be cpo’s. Let � �
� �	� � � and � � 	 �	� 	�� be ep-pairs between 	 and � . Then,
the composition of � � � �	� � � and � � 	 �	� 	 � is the ep-pair � � �	� �
 � � � � � 	 �	� 	��� � � .
Theorem 3.9. Composition of ep-pairs is transitive and has as identity the ep-pair � id � id � .

3.3.2 Domains

Definition 3.37. A domain is a bifinite cpo 	 with a bottom element, written as � and a top element,DEFINITION

written as � . For all elements ����	 , it must be �
���
�� .5

Definition 3.38. Every set � defines a flat domain ��� , whose underlying set is ��� ��� ��� �
and in

which ��
 � iff �
�� or �
�� .

A number of useful domains can be defined at this point. The trivial domain � contains a single
element � , which is both bottom and top. The flat domain that corresponds to the empty set is the
domain � with elements � and � . A useful domain with a single ordinary element is �
 � u

�
� .

The domain of truth values is defined as �
 � true � false
�
� . The domain � is defined as �
�� � ,

where � is the set of integer numbers. The natural numbers also form a poset � under their usual
ordering . It should be noted that � is not a cpo nor a domain, since it does not have a top element.

Definition 3.39. If 	 is a poset, an � -chain � � � � �"!$# in 	 is a set of elements � � � 	 such that
�� �% implies � �
 �'& .

Theorem 3.10. If 	 is a poset with a bottom and a top element, the set of ideals over 	 ordered by
subset inclusion is a domain.

3.3. Domain theory 35

Definition 3.40. A function � � 	 � � between posets 	 and � is monotone if �
 � implies FUNCTIONS

� � � �
�� � � � .

Definition 3.41. A function ����	 � � between posets 	 and � is continuous if it is monotone and
� � � � �
 � � � � � � � ��� � �

for all directed � �	 .

Definition 3.42. A function � ��	 � � between domains 	 and � is strict with respect to � if
� � � �
�� . It is strict with respect to � if � � � �
 � . Finally, it is strict if it is strict with respect to
both � and � . The notation ����	 � � � indicates that � is strict.

Definition 3.43. A relation
 can be defined for functions between domains 	 and � as follows. If
� � 	 � 	 � � , then ��
 	 iff � � � �
 	 � � � for all ����	 .

Theorem 3.11. The set of continuous functions between 	 and � under the relation defined in Def-
inition 3.43 is a domain. This domain is denoted by 	 � � .

Definition 3.44. An element ����	 is a fixed point of a function ��� 	 � 	 if �
 � � � � .

Theorem 3.12 (FIXED POINT). If 	 is a domain and � � 	 � 	 is continuous, then � has a least
fixed point fix ��� � � 	 . That is fix ��� �
 � � fix ��� � � and fix ��� �
 � for all � such that �
 � � � � .
Furthermore:

fix ��� �

��

��� �
� � � � �

Definition 3.45. Let 	 be a domain, � � 	 be one of its elements and � � 	 � 	 be a continuous
function. The closure operator can be defined in a way similar to the least fixed point operator,
provided that ��
 � � � � :

clo � � � ��� �

��

��� �
� � � � �

It should be noted that clo � � � ��� � is also a fixed point of � , i.e. � � clo � � � ��� � �
 clo � � � ��� � .

3.3.3 Domain constructions

Definition 3.46. If 	 and � are domains, then the product 	 � � is a domain. The elements of PRODUCTS

	 � � are the pairs � � � � � with ����	 and � � � , and the ordering relation is defined as:

� � � � � � �
 � � 	 � � 	 ����� �
 � � 	
	 � �
 � � 	

Definition 3.47. If 	 � � is a product domain, two continuous projection functions fst � 	 � � � 	
and snd ��	 � � � � can be defined as fst � � � � �
 � and snd � � � � �
 � .

Definition 3.48. If 	 , � and � are domains and � � � � � 	 and �
	 � � � � are continuous func-
tions, then a continuous function � � � � �
	�� � � � 	 � � can be defined as � ��� � �
	 � �
 � ��� � � �
	�� � .

5 Other approaches define domains as cpo’s, or as pointed cpo’s (i.e. cpo’s with a bottom element).

36 Chapter 3. Mathematical background

Theorem 3.13. For any domains 	 , � and � and for any continuous functions � � � � � 	 ,
�
	 � � � � and 	 � � � 	 � � the following equations are satisfied:

� fst ��� ��� � �
	��
 ���
� snd ��� � � � � 	 �
 � 	
� � fst ��	 � snd ��	 �
 	

Definition 3.49. A function � � 	 � � � � is bistrict with respect to � if � � � � � �
�� whenever
�
 � or �
 � . It is bistrict with respect to � if � � � � � �
 � whenever �
 � or �
 � .
Finally, it is bistrict if it is first bistrict with respect to � and then bistrict with respect to � . That is,
� � � ��� �
 � � � ��� �
�� .

Definition 3.50. If 	 and � are domains, then the smash product 	�� � is a domain. The elementsSMASH

PRODUCTS of 	�� � are the pairs � � � � � , with ����	�� ��� ��� �
and � � ��� ��� ��� �

, plus two additional bottom
and top elements � ���"� and � ����� . The ordering relation is defined as in the case of Definition 3.46,
with the additional relation that � ���"�
 � � � � �
�� ���"� for all elements � � � � � .
Definition 3.51. If 	 and � are domains, then the separated sum 	 � � is a domain. The set ofSEPARATED

SUMS elements of 	 � � is:

� � � � � � � ����	 �
� � � � � � � � � � � �

� ��� ��	�� ��� ��	 � �
The ordering relation is defined separately for each kind of pairs, i.e. � � � � � �
 � � 		� � � � � �
 � � 	
and � � � � � �
 � � 	 � � � ��� �
 � � 	 . In addition, � ��	 �

�� ��	�� for all
 ��	 � � .

Definition 3.52. If 	 � � is a sum domain, two continuous injection functions inl � 	 � 	 � �
and inr ��� � 	 � � can be defined as inl �
 � � � � � and inr �
 � � � � � .
Definition 3.53. If 	 , � and � are domains and � � � 	 � � and �
	�� � � � are continuous
functions, then a continuous function � � � � 	 � � 	 � � � � can be defined as:

 � � � � 	 �

��� ��
��� �

�� ��	 �
��� �

�� ��	 �
��� � �

 � � � � �
� 	 � �

 � � � � �

Theorem 3.14. For any domains 	 , � and � and for any continuous functions � � � � � 	 ,
�
	 � � � � and 	 � � � 	 � � the following equations are satisfied:

� ��� � �
	 ��� inl
 � �
� ��� � �
	 ��� inr
 �
	
� �	�� inl � 	�� inr �
 	

Definition 3.54. If 	 and � are domains, then the coalesced sum 	�� � is a domain. The set ofCOALESCED

SUMS elements of 	�� � is:

� � � � � � � ����	�� ��� ��� � �
� � � � � � � � � � ��� ��� ��� � �

� ��� ���"� ��� ����� �
The ordering relation is defined as in Definition 3.46.

Definition 3.55. In the case of coalesced sums, the injection functions inl � 	 � 	�� � and
inr ��� � 	�� � are the strict versions of the functions used in separated sums.

3.3. Domain theory 37

Definition 3.56. If 	 is a domain, the lifted domain 	�� is a domain whose elements are the pairs LIFTED

DOMAINS� � � � � with ����	 , plus two additional bottom and top elements � ��� and � ��� . The ordering relation
is defined as � � � � �
 � � � � � � �
 � � with the additional relation that � � �
 � � � � �
 � � � for all
elements � � � � � .
Definition 3.57. If 	�� is a lifted domain, two continuous functions up � 	 � 	�� and down �
	�� � 	 can be defined as follows:

up �
 � � � � �

down

� � � �

�� ���
� � �

�� ���
� �

 � � � � �

Theorem 3.15. The following properties are satisfied for a lifted domain 	�� :
� down � up
 id �
� id � �
 up � down

Let 	 be a domain and � be a domain constructor such that � � � � is a domain for all � � 	 . DEPENDENT

FUNCTIONS

AND

PRODUCTS

Then, a dependent function is a function � defined on elements of 	 , such that � � � � � � � � � for all
elements ��� 	 . The domain of dependent functions is written as ��� 	�� � � � � . Also, a dependent
product is a product � � � � � with � � 	 and � � � � � � . The domain of dependent products is written
as ����	
	 � � � � . For a formal definition of dependent functions and products and their properties, the
reader is referred to [Gunt92].

3.3.4 Categorical properties of domains

Definition 3.58. Every poset 	 induces a category. The objects of this category are the elements of
	 . Also, for every pair of elements � � � � such that �
 � the induced category contains a unique
arrow from � to � . For every pair of elements that are not related by
 , there are no arrows in the
induced category.

Theorem 3.16. Domains and continuous functions form a category � ��� .

Theorem 3.17. Domains and ep-pairs form a category � ��� �� .
Theorem 3.18. The domain � is an initial object of the category � ��� �� .
Theorem 3.19. Domain products and coalesced sums are products and sums in the categorical sense,
in category � ��� .

Definition 3.59. A continuous semi-lattice domain is a domain 	 together with a continuous binary
function � ��	 � 	 � 	 which is associative, commutative and idempotent.

Definition 3.60. A homomorphism between continuous semi-lattice domains 	 and � is a continu-
ous function ����	 � � such that � � � � � � �
 � � � � �$� � � � � for all � � � ��	 .

Theorem 3.20. Continuous semi-lattice domains and continuous homomorphisms form a category
��� �

.

Definition 3.61. The forgetful functor
 � ��� � � � ��� is defined by simply taking the underlying
domain of a continuous semi-lattice domain. It has the identity action on arrows.

38 Chapter 3. Mathematical background

3.3.5 Diagrams, cones and colimits

Definition 3.62. Let � be a poset and
�

a category. A diagram indexed by � over
�

is a functor� ��� � �
.

Definition 3.63. A cone over a diagram
� ��� � �

is an object � in
�

together with a family of
arrows ��� � � ��� � ��� indexed by the elements of � , such that for all �
	� in � the following diagram
commutes:

� �
� �
��� � �

�
�
�
�
�

���

� ��� �

� � �
�

where � � � is the arrow in
�

which is the image mapped by
�

of the unique arrow in category �
corresponding to �
�� . The aforementioned cone is denoted by � � � ��� .

Definition 3.64. If � � � � � and
 � � � � are cones over a diagram
� ����� �

, then arrow
����� ��� is a mediating arrow if for all � ��� the following diagram commutes:

� � � �

�
�
�
�
�

 �

� ��� �

� �
�

The aforementioned mediating arrow is also denoted as ��� � �
 .

Definition 3.65. A cone � � � � � is colimiting if for any other cone
 � � � � there is a unique
mediating arrow ��� � �
 . In this case � is a colimit of

�
.

Theorem 3.21. The colimit of a diagram, if it exists, is unique up to isomorphism.

Definition 3.66. A functor � � � � � is continuous if for all directed diagrams
�

and for all
colimiting cones over

�
the cone � � � � is colimiting over � � � � .6

The directed poset � is commonly used for indexing diagrams. In this case, a diagram
� � � � �

can be viewed as the categorical analogue of an � -chain, that is, a family
�
 � � � � � � � ��! # where,

for all � � � ,
�
� is an object in

�
and � � �

�
� �

�
��� � is an arrow in

�
. The arrows corresponding

to � 	 in � can be then defined as the composition of � ��� ����� � ��� � � . Given such a diagram
�

, a
diagram

� �
 � � �� � �
�
� � ��! # can be defined by taking

� �
�
 �

��� � and �
�
�
 � ��� � , for all � � � .

Also, given a diagram
� � � � �

and a cone � � � � � , the cone �
�
� � � � �

can be defined by
taking �

�
�
 � ��� � , for all � � � .

Theorem 3.22. Let
�

be a category with an initial object
�

and � � � � �
be an endofunctor on

�
.

Let � � � � � � � � be the unique map from the initial object
�

to � � � � and
� � � ��� be the � -chain

��� � � � � � � � ��� � � ��! # . If there is a colimiting cone � � � � � and the cone � � � � � � � � � � � � � � is
also colimiting, then the mediating arrow � � � � � ��� between � � � � and �

�
is an initial � -algebra.

6 � ��� � is defined as the composition ��� � of functors � and � .

3.3. Domain theory 39

3.3.6 Powerdomains

Definition 3.67. If � is a set, the set of finite non-empty subsets of � is denoted by ���� � � � . DEFINITION

Definition 3.68. If 	 is a poset, a binary relation

�

can be defined on ���� ��	 � as follows:

�

� � � ��� � � �

�
	���� � � ��
 � � 	 ��� ��� � �
	�� � �
� ��
 � �

Theorem 3.23. According to the ordering of Definition 3.68, the set ���� ��	 � is a poset. If 	 has a
bottom or top element, then also � �� ��	 � has a bottom or top element.

Definition 3.69. If 	 is a domain, then the (convex) powerdomain of 	 , written as 	
�
, is the domain

of ideals over the poset ���� � � ��	 � � ordered by

�
.

Theorem 3.24. Let 	 be a domain and � � � ��	 . The following properties are satisfied:

� �
 � � � � � � �
� � � �
 � ��� � � �
� � � �
����� �

� ��	 � �

Definition 3.70. Let 	 and � be domains. If ��� 	 � � is a continuous function, then the function
�
�
��	
�
� �

�
defined below is also continuous:

�
� �
 � � ����� � � ��	 � � ��	 � � � � �
 � � ��� � � � � � �

Definition 3.71. Let 	 be a domain. Then, the powerdomain singleton is a continuous function
��� � �� ��	 � 	

�
defined as follows for all ����	 :

��� � ��
 � � �� �� � � ��	 � � ��	 � � ��	 � � �
 � 	 �
 � � � �

Theorem 3.25. Let 	 be a domain and � � � � 	 . The following properties hold:

� ��� � � ��
 � � �
� ��� � � ��
 � � �
� �
 � � ��� � ��
 ��� � ��

Definition 3.72. Let 	 be a domain. Then the powerdomain union is a continuous binary operation
�
�
� 	
�
��	

�
� 	

�
defined as follows, for all � � � ��	 � :

� � � �
 � � ������ � � ��	 � � ��	 � � � � � � � � ��
 � � � � �

Theorem 3.26. Let 	 and � be domains, � ��� � � ��	 � and ����	 � � be a continuous function. The
following properties hold:

� � � � �
 �
� � � � �
 � �

� �
� � �

�
� � � � � �
 ��� �

� � � � � �
� �

�
� � � � � �
 ���

� � � � � ��� � � �

40 Chapter 3. Mathematical background

Theorem 3.27. Let 	 be a domain. Then, the domain 	
�

together with the binary operation �
�
�

	
�
� 	

�
� 	

�
form a continuous semi-lattice domain.

Definition 3.73. The powerdomain functor � � � ��� � ��� �
is defined by taking � ��	 � to be the

continuous semi-lattice domain formed by 	
�

and �
�
, for every object 	 � � ��� , and � ��� �
��

�
for

every function ��� 	 � � in � ��� .

Theorem 3.28. The powerdomain singleton is a natural transformation between the identity functor
on � ��� and the functor
 � � , that is ��� � �� � id ���� ��
 � � .

Theorem 3.29. The powerdomain functor � is left adjoint to the forgetful functor
 � ��� � �
� ���
with the powerdomain singleton as the unit of the adjunction.

Definition 3.74. Let 	 be a domain and let � � 	 � 	 � 	 be a binary operation on 	 that is
associative, commutative and idempotent. A continuous function � � � 	

�
� 	 can be defined as

follows, for all � ��	 � :
� � �
 � � � � � � � � �

where � � is defined as the result of the application of operation � to all the elements of the finite
non-empty set � , for all � ������ � � ��	 � � .

Theorem 3.30. For all domains 	 , function ��� ��	
�
� 	 specified in Definition 3.74 is a continuous

homomorphism between the continuous semi-lattice domains � 	�� ��� and � 	 � � � � � .
Theorem 3.31. The family of continous functions ��� specified in Definition 3.74 defines a natural
transformation between the functor � �
 and the identity functor on

��� �
, that is � � � �
 �� id ��� � .

Theorem 3.32. The natural transformation � � � �
 �� id ��� � specified in Theorem 3.31 is the counit
of the adjuction specified in Theorem 3.29.

As a result of Theorem 3.7, the adjunction � � �
 � ��� � �� � induces a monad
	

on � ��� . The elementsPOWERDO-
MAIN

MONAD
of this monad are:

� The functor
	 �	� ��� �
� ��� defined by

	 ��	 �
 	
�
, for all domains 	 , and

	 ��� �
 �
�
, for

all continuous functions � � 	 � � .

� The unit � � id
��� �� 	
defined by � � �
 ��� � �� for all domains 	 and all elements ����	 .

� The join � � 	 	 �� 	
defined by � ���
� ��� �

�
��� ��� �

for all domains 	 and all
elements � ��	

� �
.

Two things should be noted about the monad’s join. First, set union is used here as the least upper
bound operator with respect to the subset inclusion relation
 � � . Second, the join is equivalent to the
big union operator for the convex powerdomain, as defined in [Plot76].

The powerdomain monad can be also used in the spirit of Section 3.2.2. In this case, to facilitate
the definition of the bind operator, the following definition is used.

3.4. The meta-language 41

Definition 3.75. Let 	 and � be domains and ��� 	 � �
�

be a continuous function. Then, function
ext

�
� � 	

�
� �

�
is defined as follows for all � ��	 � :

ext
�
� �
 � � ���

� � �

Definition 3.76. If 	 and � are domains, the bind operator � ��� � � 	 ��	 � � ��	 � 	 � ��� � � 	 � � �
is defined as follows, for all continuous functions � � 	 � 	 � ��� and for all � � 	 ��	 � :

� ��� �
 ext
�
� �

3.4 The meta-language

In order to formulate specific elements of domains in denotational descriptions, a meta-language has
to be employed. Although researchers have not agreed on a standard meta-language for this purpose
and there is considerable variation in the notational conventions used by various authors, it seems that
variations of the � -calculus are very popular. Such a variation will be used in this thesis, following
mostly the notation of [Moss90] and [Gunt90]. In this section, the meta-language is outlined, keeping
in mind the definitions of Section 3.3. The core of the meta-language is first presented, followed by
additional notational conventions that add nothing substantial to the language and can be regarded as
syntactic sugar.

3.4.1 Core meta-language

Every well-formed phrase � of the meta-language denotes an element � of some domain 	 . The
notation � � � � 	 is used in the rest of this section as an abbreviation of the previous sentence. The
well-formedness of a phrase depends generally on the well-formedness of its components and on a
number of additional restrictions. In the rules to follow, letters � and � represent respectively phrases
and identifiers of the meta-language, the letter 	 represents domains and the letters � � � � � � 	 represent
elements of domains. In particular, the last two represent continuous functions.

Basic notation: Named elements of domains, (e.g. � , � , integer numbers, etc.) are used to repre-
sent themselves. Parentheses can be used to group phrases of the meta-language.

Equality: The equality operator
 � 	 � 	 � � defines a binary relation. Its continuity follows
from its restriction to the elements true and false of � . If � � � � � 	 and � 	 � � ��	 , then:

� �
 � 	 � true �"� � if � and � are the same element of 	
� �
 � 	 � false ��� � otherwise

Conditional: If � � � ����	 and � 	 � � � 	 , then:

� � � � � � 	 � � � 	 � if � � true ���
� � � � � � 	 � � � 	 � if � � false ���
� � � � � � 	 � � � 	 � if � � � ���
� � � � � � 	 � � � 	 � if � � � ���

42 Chapter 3. Mathematical background

Function abstraction: The � -notation � � � � is used to represent function abstractions. The phrase
� may contain instances of the identifier � . Let � � 	 � � 	 	 be a continuous function. If for
all ����	 � , by assuming that � � � � 	 � it is possible to deduce that � � � � � � ��	 	 , then:

� � � � � ��� 	 � � 	 	
Function application: If �
� � � � 	 � � 	 	 and � 	 � � � 	 � , then:

� � � 	 � � � � � ��	 	
Function composition: If �
� � ����	 � � 	 	 and � 	 � 	 � 	 	 � 	 � then:

� 	�� � � � 	����� 	 � � 	 �

Least fixed point and closure operators: If � � � � 	 � 	 and � � � � � 	 then:

fix � � fix ��� � � 	
clo � � � � clo � � � ��� � � 	

Domain constructions: The notation used in Section 3.3.3 for representing the elements of various
domain constructions is extended to phrases of the meta-language. In particular, special notation
is used for products, sums, lifted domains and powerdomains.

Monad notation: The meta-language is further extended by using the notation defined in Sec-
tion 3.2.2 for the representation of monads, monad morphisms, monad transformers and op-
erations on them.

3.4.2 Syntactic sugar

Unary and binary operators: Functions may be written as prefix unary or infix binary operators,
if this is considered appropriate.

Abbreviations for products and sums: Since the distinction between ordinary and smash products,
as well as separated and coalesced sums, is usually clear from the context, it is possible to use the
same notation for both. The injection functions inl and inr for separated and coalesced sums
may be omitted whenever they can be deduced from the context. Also, � � E 	 � may be used for
determining whether the phrase � denotes an element of 	 in a sum domain and, provided that
this is the case, � � � 	 � denotes the corresponding element of 	 . Both can be defined in terms
of the core notation for sums.

Indirect domain definition: Flat domains may be defined by enumerating their ordinary elements.
For example, the following definitions are equivalent:

�
 true � false
�
 � true � false

�
�

The same sort of abbreviation may be applied to coalesced sum domains. If it is assumed that
� � � and

� � � , the following definitions are equivalent:

	
�� � �
	
 � � �

3.4. The meta-language 43

Furthermore, the summands may be given descriptive names as illustrated in the following
example:

	
 integer � � � truth � �
Let structure: In its primary form, the let structure can be defined by means of function abstraction

and application. The following equivalence holds:

��� 	 �
 � � ��� � 	�� � � � � � 	 � � �
It should be made clear that � is only bound in � 	 and not in � � . Therefore the let structure is
not recursive. More than one binding clauses can be given in the same let structure, as stated by
the following equivalence:�����

�
���
	 � �
 � �

� 	
 � 	
� � �

� �
 � ���� �

������
� � ���
	 � �
 � � ��� � ���
	 � 	
 � 	 ��� � � � � ��� 	 � �
 � �

��� � � � � � �

Case structure: The case structure in its primary form is used as syntactic sugar in order to distin-
guish between the summands of separated or coalesced sums. It can be defined by means of the
core notation for sums. As a complex example, consider the following equivalent definitions:

	
 men � � � women � � � delay � �
	
 � � � ��� ���

Then, the following equivalence holds:���
�
	�
� � ����

men � � � � �
women � ��� � 	
delay � � � � �

����
� � � � � � � � � � � � 	 � � � � � � � � �

Furthermore, a special otherwise clause can be used in order to uniformly treat all cases that
have not been enumerated.

Pattern matching: The use of the case structure that was illustrated above introduces a way of
binding identifiers in phrases of the meta-language that is similar to pattern matching. It applies
to products, sums, bottom and top elements and is intuitively equivalent to the pattern matching
supported by the functional programming language Haskell. On condition that the pattern can
always be matched, the same notation can also be used in conjunction with the let construct.
Pattern matching can be defined by means of the conditional construct and core notation for
products and sums.

3.4.3 Auxiliary functions

Several polymorphic auxiliary functions are defined in order to facilitate the definition of the seman-
tics. Although most of these correspond directly to categorical or domain theoretic mathematical
objects, the following definitions use the defined meta-language. Also, various unary and binary op-
erators on domains � (e.g. 	 , � and �) and � (e.g. +, -, �) are used; their definitions are omitted. It
should be noted that the same notation is used for separated and coalesced sums.

44 Chapter 3. Mathematical background

� id ��� ���
id ��� ��� �

IDENTITY

FUNCTION

� � � �
� � � � �	� ��
 �������
 ��� ��

� � �
� � � ����� � � � � � � � � � �

FUNCTION

UPDATE

� strict � ���	� ��
 � ��� ��

strict � ��� � � � ��� � � ����� � � ��� � �

STRICTNESS

� strict � ���	� ��
 � ��� ��

strict � ��� � � � ��� � � ��� � � � � � � �

� strict � � �	� ��
 � ��� ��

strict � � strict � � strict �

� bi-strict � ���	� ��
 ��! � ��� �"
 ��!
bi-strict � ��� � � � � � � # � � � ��� � ��# � � ��� � � � ��$ � � � � #

BI-
STRICTNESS

� bi-strict � ���	� ��
 ��! � ��� �"
 ��!
bi-strict � ��� � � � � � � # � � � ����� ��# � � ����� � � � $ � � � � #

� bi-strict � � �	�%�"
 ��! � ���%�"
 ��!
bi-strict � � bi-strict � � bi-strict �

� isl �&�)
 ��'
isl � � � ���

true � �(� false �
SUM

OPERATIONS

� isr �&�)
 ��'
isr � � � ���

true � �)� false �
� outl ���)
 ���

outl � � id � �
� outr �&�)
 ��

outr � � � id �
� �+* ,-� � �	� ��. �	
 � �/� �	
 ��. �0! � � � �	� ��. �0! � �
� * ,21 ��� ��� � �43 ,51

MONAD

FUNCTION

COMPOSITION

� mfix , � �	� ��. �	� � � �6. �	� �
mfix , ��� � � fix � �7� � � 3 , � �

MONAD FIXED

POINTS

� mclo , �2. �	� � � �	�,�6. �	� � � ��. �	� �
mclo , �8�:9 � � � � clo 9 � �7� � � 3 , � �

Part II

Static semantics

Chapter 4

Static semantic domains

This chapter defines the domains which are used in order to describe the static semantics of C. Each CHAPTER

OVERVIEWdomain is defined together with the basic operations that are allowed on its elements. Section 4.1
discusses the structure of static semantic domains. In Section 4.2 a small set of auxiliary domains is
introduced. Section 4.3 defines the static semantic domains that represent C’s types. In Section 4.4 a
simple error monad is introduced, which is later used for simplifying the description of static seman-
tics. Section 4.5 defines domains that represent environments, which most commonly are variations
of mappings from identifiers to types. Finally, in Section 4.6 a large number of auxiliary functions is
defined. These functions are not related to particular domains, however they are used to simplify the
semantic equations that are given in the following chapters.

4.1 Domain ordering

It should be noted that for all domains used in specifying the static semantics of C, the domain or-
dering relation
 is easily defined since these domains are either coalesced sums or given by domain
equations, recursive or not. This ordering is crucial in the treatment of incomplete types, as is further
discussed in Chapter 6. Whenever � and � are different elements of a static semantic domain, the
relation ��
 � denotes that � is a better approximation of the incomplete element � .

As a typical example, a structure that has been just declared is associated with type struct � ��� � ,
where

�
is its tag. When the same structure is later completed, its type will become struct � ��� � , for

some member environment � . Since �
�� , we deduce that:

struct � ��� �
 struct � ��� �

and therefore the completed type is indeed a better approximation of the previous incomplete type.
The top element of static domains is mainly used to signify an “over-completed” value, which

typically denotes something unspecified, abnormal or erroneous. For many static domains, the relation

 is more or less trivial, or even degenerates to the equality relation. Also, for many domains, bottom
and top elements do not denote anything important and are not used at all.

4.2 Auxiliary domains
� � ����� �

(undefined) IDENTIFIERS

The domain �
	 � is a flat domain whose elements represent all legal identifiers, as defined in the
standard. It can be considered both as a semantic domain and a syntactic domain, since identifiers also
participate in the language syntax. A complete definition is omitted at this point.

48 Chapter 4. Static semantic domains

� � � '���� '���� � � tag-struct � tag-union � tag-enumTAG TYPES

The flat domain �

	 ���� � is used to distinguish between the three types of tags that are allowed by
the C language. Its three ordinary elements correspond respectively to structure tags, union tags and
enumeration tags.

� � � '���� � tagged � � �� � � untagged � � �TAGS

The domain �

	 is used to distinguish between different structure, union and enumeration types.
Each such type is characterized by an element of this domain. Ordinary elements of this domain
belong to two categories. Elements of the form tagged � � � � characterize types that have been given a
distinguishing tag in the program, namely � , whereas elements of the form untagged � � characterize
tagless structure, union or enumeration types. The integer number � in both cases is used to uniquely
determine different types.

4.3 Types

The domains defined in this section represent various kinds of types that are used, explicitly or im-
plicitly, by the type system of C. Some of these kinds correspond directly to the type classification, as
defined in - 6.1.2.5 of the standard. Others are only introduced to facilitate the type system’s formal-
ization.

� � � '���� ������� � void � char � signed-char � unsigned-char� short-int � unsigned-short-int � int � unsigned-int� long-int � unsigned-long-int � float � double � long-double� ptr � � � � enum � � � � struct � � �� � � union � � �� �

DATA TYPES

Data types, represented by the domain ���� ��� �"! , provide the basis of the type system. They corre-
spond to the different primary types of data that a C program can manipulate as first class elements, i.e.
data that can be used in expressions, assigned to variables, passed as function parameters and returned
as function results. Data types include all scalar types, structures, unions and the void type. The latter
is only included to reduce the type system’s complexity; the standard explicitly states that there can
be no data elements of this type.

Apart from the basic types, the standard defines the following type synonyms size t , wchar tPREDEFINED

DATA TYPES and ptrdiff t . These stand for specific data types and are implementation-defined. They are treated
as ordinary elements of ���� � �#�"! , satisfying the following requirements:

� size t is an unsigned integral type,
� wchar t is an integral type, and
� ptrdiff t is an signed integral type.

� $ �&%(')� � � noqual � const � volatile � const-volatileQUALIFIERS

Qualifiers are represented by the flat domain *,+
 � . The standard supports two qualifiers, const and
volatile, resulting in four different combinations. It should be noted here that, for the sake of generality,
an unqualified type is considered as qualified with noqual .

4.4. The error monad 49

� � � '�� � � ����� � obj � � $ � � array � � �� � OBJECT TYPES

Object types, represented by the domain ���� ���	��
 , are associated with objects and comprise of all
qualified versions of data types and array types. Array types are not qualified; their elements are.

� � � '�� � �	���� � func � � �� � FUNCTION

TYPES

Function types are represented by the domain ���� ������� . They are characterized by the data type of
the result and the types of their parameters, as specified in a function prototype. It should be noted
that function types cannot be qualified, nor can the types of their results. It is probably a controversial
issue whether the standard allows any of these and, if it does, what this means.

� � � '�� � � ����� � � � � DENOTABLE

TYPES

Denotable types, represented by the domain ���� � ��� � , are object types and function types. These are
the types that can be associated with identifiers in environments.

� � � '���� ������� � � � bitfield � $ �� � MEMBER

TYPES

Member types, represented by the domain ���� �"! � ! , are the ones that can be associated with identi-
fiers in member environments, i.e. with members of structures or unions. Member types include object
types and bit-fields. The latter can be qualified and are characterized by their bit-field type and their
length in bits.

� � '���� � �$# � � int � signed-int � unsigned-int BIT-FIELD

TYPES

Bit-field types are the integer types that can be associated with bitfields. They are represented by the
flat domain ���� � ��% ! . It should be noted that, in this context, the three types int , signed-int and
unsigned-int are all different from each other.

� & � '�� � ��&��(' � � � � VALUE TYPES

Value types, represented by the domain ���� �") �+* , are associated with values that participate in expres-
sions. Such values are often called r-values in literature. Value types consist of data types and function
types. Qualifiers are not allowed in values.

� , � '���� � # ��� � normal � � � � typedef � � � � enum-const � � � IDENTIFIER

TYPES

Identifier types are represented by the domain ���� � % �	� . They are associated with identifiers in envi-
ronments, taking into consideration whether an identifier denotes an object of some particular type, a
type synonym defined by typedef, or an enumeration constant.

� - � '���� �/.10�2 � exp � & � � lvalue � � � � val � � � � arg � � � � stmt � � �� tunit � xdecl � decl � prot � � � � par � � � � idtor� dtor � � � � init � � � � init-a � � � � init-s � � � � init-u � � �
PHRASE TYPES

Phrase types are represented by the domain ���� �4365�7 . These types are associated with phrases, i.e.
entire program segments, and are described in more detail in Table 4.1. The first four are associated
with expressions, the fifth with statements and the rest with declarations and initializations. They are
not used until Part III.

50 Chapter 4. Static semantic domains

Table 4.1: Description of phrase types.

exp � & � expression, whose result is a non-constant r-value of type &
lvalue � � � expression, whose result is an l-value of type

�
val � � � expression, whose result is a constant r-value of type

�
arg � � � actual arguments of a function with prototype �
stmt � � � statement in a function returning a result of type

�
tunit translation unit
xdecl external declaration
decl declaration
prot � � � description of a function prototype specified by �
par � � � description of parameter of type

�
idtor declarator with initializer
dtor � � � declarator for identifier of type �
init � � � initializer for a member of type

�
init-a � � � initializer for an array object with elements of type

�
init-s � � � initializer for a structure object with members specified in �
init-u � � � initializer for a union object with members specified in �

4.4 The error monad

The use of a simple error monad in the definition of the static semantics provides a way of generatingMOTIVATION

and propagating errors. Within the individual static semantic domains, top elements are often used
to represent abnormal situations. However, in order to propagage these error messages, it would be
necessary to enforce that all functions be strict with respect to top elements, something which would
create a number of undesirable side effects. The definition of � is considered a better and more
modular approach.

� � ��� � � �����DEFINITION

For each domain 	 , the domain � ��	 � is defined as the coalesced sum of 	 with � , which contains
a single ordinary element. This element, namely u , is used to represent errors. Equality and domain
ordering are trivially defined for � ��	 � , in terms of the corresponding relations in 	 . The monad’s unit
is defined as follows:

� unit � ��� � � ��� �
unit � � inl

and it is easy to verify that the error monad preserves bottom and top elements:

unit � �
	���� ��� 	�
unit � � 	 ��� ��� 	�

The bind operator for monad � is used in order to propagate errors. It is defined as follows:

� � 3 � � � � �	� �� �	� � � �	
 � � � � �	
 �
� 3 � � � � � inr � �

It is easy to prove that � � � unit � � ��� � satisfies the three monad laws and is indeed a monad:

4.5. Environments 51

unit � � 3 � � � � �
� 3 � unit � � �
� � 3 � � � 3 � 1 � � 3 � � � ��� � �43 � 1 �
In order to generate errors, function error � is defined as follows: ERRORS

� error � � � ��� �
error � � inr u

and, again, it is easy to verify that errors are correctly propagated, as shown by the following proper-
ties:

error � 3 � � � error �� 3 � � � ���
error � � � error �

As a matter of convention and since � is the only monad used in the description of static semantics, SUBSCRIPTS

subscripts are be omitted from all monad related operations in the rest of Part II and whenever they
can easily be deduced from the context.

4.5 Environments

The domains defined in this section represent various kinds of environments. Environments typically
associate types with identifiers and are variations of functions from identifiers to static type domains.
For each environment domain, the domain definition is followed by several functions that are used for
the manipulation of its elements.

4.5.1 Type environments

Type environments, represented by the domain �
� 	 , contain information about identifiers that are MOTIVATION

declared in C programs. They should contain at least the name spaces for ordinary identifiers and
tags. Ordinary identifiers should be associated with identifier types, whereas tags should be associated
with the subset of data types containing structure, union and enumeration types. Type environments
should be structured in the same way that C program scopes are, that is, they should follow a tree-like
structure of nested scopes.

� � ��� (� � � � � � ��'���� � # ��� �� � � � � ��'�� � ������� � ��� (�
DEFINITION

The name space of ordinary identifiers is represented by the first part of the product, i.e. a function
from identifiers to identifier types. The name space of tags is represented by the second part of the
product, i.e. a function from identifiers (tags) to data types. The third part of the product represents
the parent (enclosing) environment and is equal to � in the case of the outermost scope. Thus, domain
�
� 	 is a recursively defined domain. Its definition is slightly changed in Chapter 6. In the present

section the domain ordering for types is completely ignored. This is corrected in Chapter 6.

52 Chapter 4. Static semantic domains

� � � � � (�
� � ���

EMPTY

ENVIRONMENT

The empty environment associates all identifiers with the top type. Thus, since the top type denotes an
unspecified or erroneous value, in the empty environment all identifiers are not associated with types
and their use leads to errors.

� � � � ide � � � (� � ��� � � � �	'�� � � # ��� �
� � � ide � ������ , � � � � raw ide �' (� , ���� � � unit

, error

ORDINARY

LOOKUP

This function returns the identifier type that environment � associates with the ordinary identifier � .
An error occurs if the identifier is not included in � or any of its ancestors.

� � � � raw ide �,� � (� � � � � ��'�� � � # ���
� � � raw ide � ������ � ��� ��� � � # � �' (� ��� � ���� � � ��� � � � � ���� � � � � � � raw ide � �

ORDINARY

RAW LOOKUP

This auxiliary function performs the actual lookup of ordinary identifiers. If the identifier is not local
in this environment, the lookup continues in the parent enviroment. A top element is returned if the
identifier is not found.

� � � � tag � �,� � (� � � � � ��'�� ��'�� � � � � � � (� � '�� � � ����� �
� � � tag

� � ������ � � � � � raw tag �' (�� ��� � �
	��
� � � ��� � �	��

tag-struct � ����� � ! � struct � fresh-tagged
� � �' (� � �
� tag

� ! � 3 � ��� ! � unit
� � ! � ! # �

tag-union � ����� � ! � union � fresh-tagged
� � �' (� � �
� tag

� ! � 3 � ��� ! � unit
� � ! � ! # �	 ��� ����� '

�
� � error

struct � � �� � � � � � tag-struct � � unit
� � � # error

union � � �� � � � � � tag-union � � unit
� � � # error

enum � � � � � � � tag-enum � � unit
� � � # error	 ��� ����� '

�
� � error

TAG LOOKUP

This is the lookup function for tags. It is similar to the lookup function for ordinary identifiers, with
two exceptions. First, the given type of the tag is compared with the actual data type that is associated
with it in the environment � and an error occurs if the two do not match. Second, if a structure or
union tag is not found in � or any of its ancestors, it is created as an incomplete structure or union.

� � � � raw tag �,� � (� � ��� � ��'���� � �����
� � � raw tag � ������ � � � � � � � # � �' (� � � � ���� � � � � � � � � ���� � � � � � � raw tag � �

TAG RAW

LOOKUP

This auxiliary function performs the actual lookup of tags. Similar to the one for ordinary identifiers.

4.5. Environments 53

� � � � tagID � �,� � (� � � � � ��'�� ��'���� � � � �	'�� � �
� � � tagID

� � ������ � � � � � raw tag �' (� ��� � �
	��
struct � � �� � � � � � tag-struct � � unit

� error
union � � �� � � � � � tag-union � � unit

� error	 ��� ����� '
�
� � error

GET TAG

This function looks up a tag in an environment and returns the corresponding element of �

	 , i.e. a
unique tag element. It also checks that the tag is of the right kind.

� � � �
� ide � �,� � (� � � � � ��'�� � � # ��� � � � � (� �
� � �
� ide

, � �������� � � ��� � � # � �' (� � � � ��� � � unit
� � � � �
� , � � � � � # error

ORDINARY

UPDATE

This function returns an environment that is identical to � , with the exception that identifier � is
associated with type

�
. In case � is already a local in � , an error occurs.

� � � �
� tag � �,� � (� � ��� � �"'�� � � ����� � � � � (� �
� � �
� tag

� � �������� � � � � � � # � �' (� � � � ��� ��# isDeclaredTag � � � � � � unit
� � � � � � �
� � � � � # error

TAG UPDATE

Similar to the ordinary update function for tags. However, a tag can be updated even if it is local in � ,
provided it is a structure or union tag that has only been declared.

� � � �
� fresh tag � � � � (� � ��� � � '���� '���� � � � � � (� �
� � �
� fresh tag

� � �������� � � � � � � # � �� � � � �
' (� ��� � �
	��

� � � ��� � �	 �
tag-struct � � � �
� tag struct � fresh-tagged

� � ���
tag-union � � � �
� tag union � fresh-tagged

� � ���	 ��� ����� '
�
� � error

struct � � �� � � � � � tag-struct � � unit � error
union � � �� � � � � � tag-union � � unit � error
enum � � � � � � � tag-enum � � unit � error	 ��� ����� '

�
� � error

FRESH TAG

This function creates an incomplete structure or union tag in � , if it is not already local in � . Otherwise,
it checks that the tag is of the right kind and generates an error if it is not.

� � � � � (� � � (�
� � � � � � � #

OPEN SCOPE

This function returns an environment that corresponds to a newly opened scope, using � as the parent
scope. The new environment has no locally defined ordinary identifiers or tags.

54 Chapter 4. Static semantic domains

� � � � � (� � � (�
� � � ��� � � � � � � � � # � � ' (� �

CLOSE SCOPE

This function returns the parent scope of � .
� isLocal � � � ide � � � (� � � � � ��'

isLocal � � � ide � � ����� � � � � � � � # � � ' (� � � ����
LOCAL

ORDINARY

This function checks whether an � is a local ordinary identifier in environment � .
� isLocal � � � tag � � � (� � ��� � ��'

isLocal � � � tag � � ������� ��� ��� � � # � � ' (��� � ����
LOCAL TAG

This function checks whether an � is a local tag in environment � .

4.5.2 Enumeration environments

Enumeration environments are represented by the domain �
� +�� . They are used to associate theMOTIVATION

named constants in an enumeration to the numeric values that they represent. Since the standard does
not specify the size of an enumeration, but leaves it implementation-defined, it is reasonable to allow
the size of a particular enumeration to depend on the numeric values of its enumeration constants. For
tis reason, these values are necessary in the static environment.
�
� ��� ('�� � ��� � ���DEFINITION

An enumeration environment is simply represented by a function from identifiers to integer values.

� � � � � ('��
� � �8�

EMPTY

The empty enumeration environment does not contain any identifier.

� � � �
� � � � � ('��6� � � � ��� � � � � ('����
� � �
� � � � � � � ��� � � unit � � �
� � � error

UPDATE

This function updates an enumeration environment by associating identifier � with the constant integer
value � . If identifier � is already contained in the enumeration, an error occurs.

4.5.3 Member environments

The domain � �	��
 represents environments containing the members of structures or unions. In suchMOTIVATION

environments, each identifier is associated with a member type. However, in contrast to enumeration
environments, the order of individual members in a structure or union is important and must be stored
in the environment for two reasons:

� Initialization of a structure or union heavily depends on the order of its members.
� Members of a structure object must be allocated increasing addresses in memory, in the order

in which they are defined.

Thus, in order to store the order of members it is necessary to define � �	��
 in a more complicated
way than just as a function from identifiers to member types.

4.5. Environments 55

� � ��� � ��� � � � � � � ��� � �/� � ��� � ��'���� � � �$� � DEFINITION

The first part of the product is an integer number that denotes the number of members that a member
environment contains. Valid values of this part are all the non-negative integer numbers. A bottom
value is only used in the case of incomplete member environments, as is discussed in Chapter 6.
The second part of the product represents the order in which the members have been defined. It is a
function from integers to identifiers, which must map all integers between 1 and the actual number of
members to the corresponding identifiers, and all other elements of � to the top value. Finally, the
third and last part of the product is the actual mapping from identifiers to member types. Identifiers
that participate in the second part must be mapped to the corresponding member types in the third part,
and all other elements of �
	 � must be mapped to the top value. It is easy to see that all operations on
member environments that are defined below preserve the validity restrictions that were just stated.

� � � ��� � ���
� � � ��� � � #

EMPTY

An empty member environment does not contain any members. However, it should be noted that an
empty member environment is not incomplete.

� � � � �,��� � ���2� ��� � � � �	'���� ������� �
� � � � �������� � �	� � � # � �' (� � � � ���� � � unit � � � � � error

LOOKUP

This function looks up an identifier � in a member environment � . If � is contained in � its member
type is returned, otherwise an error occurs.

� � � �
� � � ��� � ���2� � � � �"'���� ������� � � ��� � ���	�
� � �
� � � �������� � � � � � # � �' (� � � � ��� � � unit

� �),+ �
� � �),+
� � � � � � �
� � � # error

APPEND

This function appends identifier � in a member environment � as a member of type % . The resulting
environment is returned. An error occurs if a member named � is already contained in � .

� ��� ��� � ��� � � � � � � ��'�� � ������� ��� � ���	�
� � �������� � � � � � # � �' (� � ��� � # � � ��� ��# � �� � � � error ����� � � �
� +� ! � �4��� � � ��� + ��� � ��� � � � � � � �*) + � �� ! � � � � � �
� � �

� ! � � ��� + � ! � � ! � #' (
unit

� � � � � � !$#

DECOMPOSE

This function decomposes a member environment by extracting its first member. It returns the name
and type of the first member and the environment that results from removing this member. An error
occurs if the member environment is incomplete (bottom) or empty. This function can be thought of
as the opposite of an imaginary “prepend” function.

56 Chapter 4. Static semantic domains

4.5.4 Function prototypes

Function prototypes are represented by the domain ��� � 	 . The main piece of information that mustMOTIVATION

be contained in a function prototype is the number of parameters and their types. The names of the
parameters are not important, but their order obviously is. In addition, the C standard allows “incom-
plete” function prototypes by using the ellipsis notation after the last parameter. Storage specifiers and
qualifiers are ignored in function parameters, as suggested by the standard in - 6.5.4.3.

� � ��� � 	 � � � � � � ��'�� � � ����� � �"'DEFINITION

The first part of the product is an integer number that denotes the number of parameters in the function
prototype. Its valid values are all non-negative integer numbers. The second part of the product is a
function from integer number to data types, which maps all integers between 1 and the actual number
of parameters to the corresponding types, and all other elements of � to the top value. Finally, the
third part of the product is a truth value; it contains the value true if the prototype ends with an
ellipsis, false otherwise. If an ellipsis is used, the number of parameters in the function prototype
must not be zero, according to the standard. However, this test is not performed here, as stated by
deviation D-10 in Section 2.3. It can be enforced in the abstract syntax.

� � � ��� � 	 �
� � � ��� � false #

EMPTY

An empty function prototype simply contains no parameters and no ellipsis.

� ���8� ��� � 	 � �"'���� ������� � � ��� � 	 � �
� � � � ����� � � � � � 	�
� # � � ' (�� � 	�
� � unit

� �),+ � � � �) +
� � � � 	�
� # error

APPEND

This function appends a parameter of type to prototype � . If an ellipsis in already present in � , an
error occurs.

� ��� � �&'���� ������� ��� � 	 � � � ��� � 	 � �� � � ������ � � � � � 	�
� # � �� !� �4��� � � � � + � � � � � �) + � � � � � � � + � �' (
unit

� �),+ � !� � 	�
� #

PREPEND

This function prepends a parameter of type to prototype � , that is, the type of the first parameter
becomes and all other parameters are “pushed” one place to the right.

� ellipsis ��� � 	 � � � ��� � 	 � �
ellipsis � � ������� � � � � ��
� # � � ' (�� � 	�
� � unit

� � � � true # error

APPEND

ELLIPSIS

This function adds an ellipsis at the end of a function prototype. If an ellipsis is already present, an
error occurs.

4.6. Auxiliary functions 57

4.6 Auxiliary functions

A number of auxiliary functions is defined in this section. These functions are used in order to simplify
the semantic equations. Most of them correspond directly to notions expressed in the standard. Some
functions apply to various domains and are subscripted accordingly, e.g. isInteger � �"! is the function
that identifies integer data types and isInteger �	�
 does the same for object types. When the domain
can easily be deduced from context, the subscripts are omitted.

4.6.1 Predicates related to types

A set of predicates is defined in an attempt to classify types. These predicates take a type as argument
and return a truth value. They are all strict with respect to bottom and top elements.

� isInteger
����� �-'�� � � ����� ��'

isInteger
����� � strict � � � � � � ��� � �
	��

short-int � unsigned-short-int � int � unsigned-int � long-int � unsigned-long-int � true	 ��� � ��� '
�
� � false �

IS INTEGER

� isInteger ��� � �-'�� � � ��� � ��'
isInteger ��� � � strict � � � � � � ��� � � 	��

obj � � $ � � isInteger
����� � � �

array � � �� � � false �
� isInteger

����� �&'�� � �����$� ��'
isInteger

����� � strict � � � � � � � � � � 	��� � isInteger ��� � � � �� � false �
� isInteger

� �$� �-'���� � � �$� ��'
isInteger

� �$� � strict � � � � � � � � � � 	��
� � isInteger ��� � � � �
bitfield � $ �� � � true �

The family of isInteger functions is used to identify integer types. They return true if the argument
is an integer type, false if it is not.

� isIntegral
����� �-'���� � ����� ��'

isIntegral
����� � strict � � � � � � � � � �
	��

char � signed-char � unsigned-char � enum � � � � true	 ��� � ��� '
�
� � isInteger

����� � � � �

IS INTEGRAL

� isIntegral ��� � �-'�� � � ����� ��'
isIntegral ��� � � strict � � � � � � ��� � � 	��

obj � � $ � � isIntegral
����� � � �

array � � �� � � false �

58 Chapter 4. Static semantic domains

� isIntegral
����� �&'�� � ������� ��'

isIntegral
����� � strict � � � � � � ��� � � 	��� � isIntegral ��� � � � �� � false �

� isIntegral
� �$� ��'���� � ����� ��'

isIntegral
� �$� � strict � � � � � � � � � � 	 �

� � isIntegral ����� � � �
bitfield � $ �� � � true �

The family of isIntegral functions is used to identify integral types, i.e. character types, integer types
and enumeration types. They return true if the argument is an integral type, false if it is not.

� isArithmetic
����� �&'���� ������� ��'

isArithmetic
����� � strict � � � � � � � � � �
	��

float � double � long-double � true	 � � ��� � '
�
� � isIntegral

����� � � � �

IS

ARITHMETIC

� isArithmetic ��� � �&'�� � � ����� ��'
isArithmetic ��� � � strict � � � � � � ��� � � 	 �

obj � � $ � � isArithmetic
����� � � �

array � � �� � � false �
� isArithmetic

����� �&'���� ������� ��'
isArithmetic

����� � strict � � � � � � ��� � � 	��� � isArithmetic ��� � � � �� � false �
� isArithmetic

����� �&'�� � � ����� ��'
isArithmetic

����� � strict � � � � � � ��� � � 	 �
� � isArithmetic ����� � � �
bitfield � $ �� � � true �

The family of isArithmetic functions is used to identify arithmetic types, i.e. integral and floating
types. They return true if the argument is an arithmetic type, false if it is not.

� isScalar
����� �&'���� ������� ��'

isScalar
����� � strict � � � � � � � � � �
	��

ptr � � � � true	 � � ��� � '
�
� � isArithmetic

����� � � � �

IS SCALAR

� isScalar ��� � �&'�� � � ����� ��'
isScalar ��� � � strict � � � � � � ��� � � 	 �

obj � � $ � � isScalar
����� � � �

array � � �� � � false �

4.6. Auxiliary functions 59

� isScalar
���$� �&'���� ������� ��'

isScalar
���$� � strict � � � � � � ��� � � 	 �� � isScalar ��� � � � �� � false �

� isScalar
����� �&'�� � ������� ��'

isScalar
����� � strict � � � � � � ��� � � 	��

� � isScalar ����� � � �
bitfield � $ �� � � true �

The family of isScalar functions is used to identify scalar types, i.e. arithmetic and pointer types.
They return true if the argument is a scalar type, false if it is not.

� isStructUnion
����� ��'���� � ����� ��'

isStructUnion
����� � strict � � � � � � � � � �
	��

struct � � �� � � union � � �� � � true	 ��� � ��� '
�
� � false �

IS STRUCTURE

OR UNION

� isStructUnion ����� �&'�� � � ��� � ��'
isStructUnion ����� � strict � � � � � � � � � � 	 �

obj � � $ � � isStructUnion
����� � � �

array � � �� � � false �
� isStructUnion

���$� �-'���� � ����� ��'
isStructUnion

���$� � strict � � � � � � ��� � � 	 �� � isStructUnion ��� � � � �� � false �
� isStructUnion

����� �&'�� � � ����� ��'
isStructUnion

����� � � � � strict � � � � � � ��� � � 	 �
� � isStructUnion ��� � � � �
bitfield � $ �� � � false �

The family of isStructUnion functions is used to identify structure and union types. They return
true if the argument is a structure or union type, false if it is not.

� isDeclaredTag
����� �-'���� ������� ��'

isDeclaredTag
����� � strict � � � � � � � � � �
	��

struct � � � � � union � � � � � true	 ��� � ��� '
�
� � false �

IS DECLARED

TAG

� isDeclaredTag ��� � �&'�� � � ����� ��'
isDeclaredTag ��� � � strict � � � � � � ��� � � 	��

obj � � $ � � isDeclaredTag
����� � � �

array � � �� � � false �

60 Chapter 4. Static semantic domains

� isDeclaredTag
����� �&'�� � ������� ��'

isDeclaredTag
����� � strict � � � � � � ��� � � 	��� � isDeclaredTag ��� � � � �� � false �

� isDeclaredTag
� �$� ��'���� � ����� ��'

isDeclaredTag
� �$� � strict � � � � � � � � � � 	 �

� � isDeclaredTag ����� � � �
bitfield � $ �� � � false �

The family of isDeclaredTag functions is used to identify incomplete structures and unions whose
tags have only been declared. They return true if the argument is such a structure or union, false if
it is not.

� isComplete
����� �&'�� � ������� ��'

isComplete
����� � strict � � � � � � ��� � �
	��

void � false	 � � ��� � '
�
� � �

isDeclaredTag
����� � � � �

IS COMPLETE

� isComplete ��� � ��'���� � ��� � ��'
isComplete ��� � � strict � � � � � � ��� � � 	��

obj � � $ � � isComplete
����� � � �

array � � �� � � � � ��� � � false isComplete ��� � � � � �
� isComplete

����� �&'�� � � ���$� ��'
isComplete

����� � strict � � � � � � � � � � 	��� � isComplete ����� � � �� � true �
� isComplete

� �$� �&'���� ��� �$� ��'
isComplete

� �$� � strict � � � � � � � � � � 	��
� � isComplete ��� � � � �
bitfield � $ �� � � true �

� isComplete
&��(' �&'���� ��&��(' ��'

isComplete
&��(' � strict � � � & � � ��� � & 	��� � isComplete

����� � � �� � true �
The family of isComplete functions is used to distinguish between complete and incomplete types.
They return true if the argument is a complete type, false if it is not. According to the standard, in-
complete types are void, structures and unions whose tags have only been declared, arrays of unknown
size and aggregate types that contain elements of incomplete types. The latter is not even allowed in
declarations and this is the reason why it is not necessary to require that all members of structures or
arrays belong to complete types.

4.6. Auxiliary functions 61

� isBitfield
����� �&'�� � ������� ��'

isBitfield
����� � strict � � � � � � � � � � 	 �

� � false
bitfield � $ �� � � true �

IS BIT-FIELD

� isBitfield
.10�2 �&'���� � .10�2 ��'

isBitfield
.10�2 � strict � � � - � � � � � - 	 �

lvalue � � � � isBitfield
� �$� � � �	 ��� � ��� '

�
� � false �

The family of isBitfield functions is used to distinguish between normal and bit-field member types.
They return true if the argument is a bit-field type, false if it is not.

� isModifiable
����� �&'�� � � ����� ��'

isModifiable
����� � strict � � � � � � � � � �
	��

struct � � �� � � union � � �� � � � � ���� � � isModifiable �
��� � � �	�	 ��� � ��� '

�
� � isComplete

����� � � � �

IS

MODIFIABLE

� isModifiable ��� � �&'�� � � ����� ��'
isModifiable ��� � � strict � � � � � � ��� � � 	��

obj � � $ � � � � const
� $ � � isModifiable

����� � � �
array � � �� � � false �

� isModifiable
����� ��'���� � ����� ��'

isModifiable
����� � strict � � � � � � � � � � 	 �

� � isModifiable ����� � � �
bitfield � $ �� � � � � const

� $ � �
� isModifiable �

�$� � � � � ������'
isModifiable �

�$� � � strict � � � � ��� ��� dom � �	� � isModifiable
����� � � � � � � �

The family of isModifiable functions is used to identify types corresponding to modifiable l-values.
They return true if the argument is such a type, false if it is not. According to the standard, the type
of a modifiable l-value must not be an array type, must not be incomplete, must not be const-qualified
and, if it is an aggregate type, must not contain non-modifiable members.

4.6.2 Functions related to types

Two relations and five functions are defined in this section. All of them are bi-strict with respect to
bottom and top elements. The two relations are specified as implementation-defined in the standard.
For this reason, they are not fully defined here. Instead, a number of properties that they must satisfy
is given.

62 Chapter 4. Static semantic domains

� � � � �&'�� � ������� �"'�� � ������� ��'
signed-char

�
short-int

�
int

�
long-int

enum � � � � int
unsigned-char

�
unsigned-short-int

�
unsigned-int

�
unsigned-long-int

float
�

double
�

long-double
� � ��� � �

isIntegral � � � � � ptr � � � � � �
� � � � � �
� ��� ��� ��� � � ��� � ��� � � � ��� � ��� � � � ��� � ��� �

TYPE

INCLUSION

The type inclusion relation between data types has the intuitive meaning that all values of the first
type are also valid values for the second, i.e. the set of values of the first type is a subset of that of the
second type. The standard specifies the aforementioned inclusions for character, integer, floating and
enumeration types, and that all pointers can be represented by some implementation-defined integral
type. The last two properties state that type inclusion is a reflexive and transitive relation.

� � � � � constant �"'���� ������� ��'
�
	 � � � �)� � 	 � � � � � � � � � � � � � � 	 � � � �

REPRESENTA-
TION OF

CONSTANTS

This is also an implementation-defined relation between constants and data types. The intuitive mean-
ing of the statement � � is that the value of the constant � can be stored in a variable of type
without any loss of information. The aforementioned property, that this relation must satisfy, only
connects this relation with type inclusion.

� firstToRepresent � integer-constant �"'���� � ����� � '
�
� � � �	'���� � ����� �

firstToRepresent � � ��� � � error
firstToRepresent � � cons � � �� � � � � � � � � � unit

� firstToRepresent � � �� �
FIRST TO

REPRESENT

This function returns the first type in a list of possible data types, in which a given integer constant
can be represented. An error occurs if the constant cannot be represented in any of the given types.

� intPromote �&'���� � ����� � � �	'�� � � ����� �
intPromote � strict � � � � � � ��� � �
	��

char � unit � � char
�

int � � int unsigned-int �
signed-char � unit int
unsigned-char � unit � � unsigned-char

�
int � � int unsigned-int �

short-int � unit int
unsigned-short-int � unit � � unsigned-short-int

�
int � � int unsigned-int �

enum � � � � unit int	 � � ��� � '
�
� � unit

� �

INTEGRAL

PROMOTIONS

This function performs the integral promotions to its argument, as specified in - 6.2.1.1 of the standard.
The argument is left unchanged if the integral promotions cannot be applied.

4.6. Auxiliary functions 63

� arithConv ��'���� ������� �"'�� � ������� � � �	'���� ������� �
arithConv � bi-strict � � � � � � � � # �� ��� � long-double ��# � ��� � long-double � � unit long-double � � � � double ��# � � � � double � � unit double � � � � float � # � � � � float � � unit float

intPromote
� �"3 � � � !� �

intPromote
��� 3 � � � !� �� � !� � unsigned-long-int ��# � � !� � unsigned-long-int � � unit unsigned-long-int � � � !� � long-int � � � � !� � unsigned-int � ��# � � � !� � unsigned-int � � � � !� � long-int � � �

unit � � unsigned-int
�

long-int � � long-int unsigned-long-int � � � !� � long-int ��# � � !� � long-int � � unit long-int � � !� � unsigned-int ��# � � !� � unsigned-int � � unit unsigned-int � � !� � int � � � � !� � int � � unit int error � � �

USUAL

ARITHMETIC

CONVERSIONS

This function performs the usual arithmetic conversions to its arguments, as specified in - 6.2.1.5 of
the standard. An error occurs if the usual arithmetic conversions cannot be applied.

� argPromote �&'�� � � ����� � � �	'���� ������� �
argPromote � strict � � � � � � ��� � �
	��

float � unit double	 ��� � ��� '
�
� � intPromote

� �

DEFAULT

ARGUMENT

PROMOTIONS

This function performs the default argument promotions, as specified in - 6.3.2.2 of the standard.

� datify ��� � �&'�� � � ����� � � �	'�� � ������� �
datify ��� � � strict � � � � � � ��� � � 	��

obj � � $ � � unit
�

array � � �� � � error �

DATIFY

� datify
����� �&'�� � ������� � � �	'���� ������� �

datify
����� � strict � � � � � � ��� � � 	��� � datify ��� � �� � error �

� datify
� �$� ��'���� � ����� � � �	'���� � ����� �

datify
� �$� � strict � � � � � � � � � � 	 �

� � datify ����� �
bitfield � $ �� � � unit � datify ��# � �� �

� datify �$# � �&'�� � � �$# � ��'���� �������
datify �$# � � strict � � � � � ��� � 	��

int � int
signed-int � int
unsigned-int � unsigned-int �

This function extracts a data type from other kinds of types. An error occurs if a data type cannot be
extracted, e.g. if the argument is an array or function type. The part of the function that converts from
bit-field types succeeds for all possible arguments. For this reason, it returns a data type, instead of a
monadic element.

64 Chapter 4. Static semantic domains

4.6.3 Compatible and composite types

Compatible types, as defined in - 6.1.2.6 of the standard and elsewhere, define a binary relation be-
tween types. This relation is represented by function isCompatible . Function composite , also
defined in - 6.1.2.6 and elsewhere, maps a pair of compatible types to a third type, compatible with
both, which shares the characteristics of both types. The two functions isCompatibleQual and
compositeQual are similar, with the exception that they effectively ignore qualifiers when checking
for compatibility. All functions are bi-strict with respect to bottom and top elements.

The relation isCompatible for data types is partly implementation-defined and for this reason itIS

COMPATIBLE is not fully specified here. Some properties that must be satisfied are given instead.

� isCompatible
����� �&'�� � � ����� �"'�� � � ����� ��'

isCompatible
����� � � � � � true

isCompatible
����� � � � � � � � isCompatible

����� � � � � � �
isCompatible

����� � ptr � � � � ptr � � � � � � isCompatible
����� � � � �� � �

�
�
��� � �

isInteger � � � � isCompatible
����� � enum � � � � �

The relation is reflexive and commutative, as stated by the first two properties. Compatibility of pointer
types is defined in terms of the types that are pointed. For each enumeration type, there is a compatible
integer type. This treatment of compatible types omits the case of structure, union or enumerated types
that are defined in separate translation units, as stated by deviation D-11 in Section 2.3. The same
relation for other kinds of types is defined as follows:

� isCompatible ����� �&'���� � ��� � �"'�� � � ����� ��'
isCompatible ����� � bi-strict � � � � � � � � # � � ��� � � � � � � # 	���

obj � ��� $ � � obj � ��� $�� � # � isCompatible
����� � ��� ��� � � � $ � � $�� ��

array � � � �� � � array � � � �� � � # � isCompatible ��� � � � � � � � � � � � � � � ���� �	 � � ��� � '
�
� � false �

� isCompatible
���� �-'���� ��� �� ��'�� � ������ ��'

isCompatible
���� � bi-strict � � � � � � ��� # � � ��� � � � � ��� # 	���

func � � � $� � � func � � � �� � � # � isCompatible
����� � � � � � � � isCompatible �

2 � � ��� � $� � � �
� isCompatible

���$� �&'�� � � ���$� ��'�� � � ���$� ��'
isCompatible

���$� � bi-strict � � � � � � �� � # � � ��� � � � � �� � # 	��� � � � � # � isCompatible ����� � � � � � �� � � � � # � isCompatible
���� � � � � � �	 � � ��� � '

�
� � false �

� isCompatible
����� �&'�� � � � �$� ��'�� � � ����� ��'

isCompatible
����� � bi-strict � � � � � � � � # � � � � � � � � � � # 	��� � � � � # � isCompatible ��� � � � � � � ��

bitfield � � $�� �� � � bitfield � � $�� �� � � # � �� � � � � � � $ � � $�� � � � � � � � � �	 � � ��� � '
�
� � false �

4.6. Auxiliary functions 65

� isCompatible �
2 � � ��� � 	 � ��� � 	 � ��'

isCompatible �
2 � � � bi-strict � � � � � � �� � # �������� � � � � � � # � � �� � � � � ��� # � � �' (� � � � � � � � � ��� � ��� � � � ��� � + � � �+� isCompatible

����� � � ��� � ��� � � �
When comparing arrays for compatibility, the least upper bound of array sizes is top when both sizes
have been specified and they are different. Notice here that the presence of qualifiers destroys com-
patibility.

� isCompatibleQual
����� �&'���� ������� �"'���� ������� ��'

isCompatibleQual
����� � � � � � isCompatible

����� � � � �
IS

COMPATIBLE

IGNORING

QUALIFIERS� isCompatibleQual ��� � �&'�� � � ����� �"'���� � ��� � ��'
isCompatibleQual ��� � � bi-strict � � � � � � � � # � � ��� � � � � � � # 	���

obj � ��� $ � � obj � ��� $�� � # � isCompatible
����� � � � ��� ��

array � � � �� � � array � � � �� � � # � isCompatibleQual ����� � � � � � � � � � � � � � ���� �	 ��� � ��� '
�
� � false �

� isCompatibleQual
���� �&'�� � �	���� �"'���� �	� 1� ��'

isCompatibleQual
���� � � � � � � � isCompatible

���� � � � � � �
� isCompatibleQual

����� �-'���� � ����� �"'���� � ����� ��'
isCompatibleQual

����� � bi-strict � � � � � � �� � # � � � � � � � � �� � # 	��� � � � � # � isCompatibleQual ��� � � � � � � �� � � ��� # � isCompatibleQual
� �� � � � � � �	 ��� � ��� '

�
� � false �

� isCompatibleQual
����� �&'�� � ������� �"'�� � ��� �$� ��'

isCompatibleQual
����� � bi-strict � � � � � � � � # � � ��� � � � � � � # 	��� � � � � # � isCompatibleQual ����� � � � � � ��

bitfield � � $ � �� � � bitfield � � $�� �� � � # � �� � � � � � � � � � � � �	 ��� � ��� '
�
� � false �

This relation is similar to isCompatible , only the presence of qualifiers in the compared types does
not destroy compatibility. It does however when there are members of structures or unions that are
qualified with different qualifiers.

� composite
����� �&'�� � ������� � '�� � ������� � � �	'���� ������� �

composite
����� � bi-strict � � � � ��� ��� # � � ��� � � ��� ��� # 	���

ptr � � � � ptr � � � � # � composite
����� � � � �� � � 3 � � � � unit ptr � � � ��

enum � � � � # � � � enum � � � # � � isCompatible
����� � enum � � � � � � unit

� error	 ��� � ��� '
�
� � � � � � � � � � unit

� � error �

COMPOSITE

TYPES

� composite ��� � �&'�� � � ����� �"'���� � ��� � � � �	'���� � ��� � �
composite ��� � � bi-strict � � � � � � � � # � � � � � � � � � � # 	���

obj � ��� $ � � obj � ��� $�� � # � � $�� � $�� � �
composite

����� � ��� ��� � 3 � � � � unit obj � � $ � � � error�
array � � � �� � � array � � � �� � � # � � � � � � � ���� � �

composite ��� � � � � � � � 3 � � � � unit array � � �� � � � � � � error	 ��� � ��� '
�
� � error �

66 Chapter 4. Static semantic domains

� composite
� 1� ��'���� �	���� �"'�� � �	� �� � � �	'�� � �+���� �

composite
� 1� � bi-strict � � � � � � � � # � � � � � � � � � � # 	���

func � � � $� � � func � � � �� � � # � composite
����� � � � � � � 3 � � � �

composite �
2 � � ��� � �� � � 3 � � � � unit func � � $� � � � �

� composite
����� �&'�� � � ���$� �"'�� � � ����� � � �	'���� � ����� �

composite
����� � bi-strict � � � � � � �� � # � � � � � � � � �� � # 	 �� � � � � # � composite ����� � � � � � �� � � � � # � composite

���� � � � � � �	 � � ��� � '
�
� � error �

� composite
� �$� �-'���� � � �$� ��'�� � � ����� � � �	'�� � � ����� �

composite
� �$� � bi-strict � � � � � � � � # � � � � � � � � � � # 	 �� � � � � # � composite ����� � � � � � ��

bitfield � � $�� �� � � bitfield � � $�� �� � � # � �� � � � � � � $ � � $�� � � � � � � � � � �
unit bitfield � � $ � �� � � error	 � � ��� � '

�
� � error �

� composite �
2 � � ��� � 	 � ��� � 	 � � � ��� � 	 � �

composite �
2 � � � bi-strict � � � � � � $� � # ������ � � � � � � � # � � �� � � � � ��� # � � �' (� � � � � � � � � ��� � ��� � �

traverse � + �� � � � � � � composite
����� � � ��� � � � � � � 3 � � � � unit

� � � � ��� # � error �
This function is used to determine composite types. According to - 6.1.2.6 of the standard, it just
combines array sizes and function parameter lists.

� compositeQual
����� �-'���� ������� �"'���� ������� � � �	'�� � ������� �

compositeQual
����� � � � � � composite

����� � � � �
COMPOSITE

TYPES

IGNORING

QUALIFIERS

� compositeQual ����� �&'�� � � ��� � ��'�� � � ����� � � �	'�� � � ����� �
compositeQual ����� � bi-strict � � � � � � � � # � � ��� � � � � � � # 	 ��

obj � � � $ � � obj � � � $ � � # � composite
����� � � � � � � 3 � � � � unit obj � � $ � � $ � � ��

array � � � �� � � array � � � �� � � # � � � � � � � ���� � �
compositeQual ��� � � � � � � � 3 � � � �
unit array � � �� � � � � � � error	 � � ��� � '

�
� � error �

� compositeQual
���� �&'�� � � ���� �"'���� � ���� � � �	'���� � ���� �

compositeQual
���� � � � � � � � composite

� �� � � � � � �
� compositeQual

���$� �-'���� ������� �"'���� ������� � � �	'�� � �����$� �
compositeQual

���$� � bi-strict � � � � � � �� � # � � ��� � � � � �� � # 	��� � � � � # � compositeQual ��� � � � � � � �� � � � � # � compositeQual
� 1� � � � ��� �	 � � ��� � '

�
� � error �

4.6. Auxiliary functions 67

� compositeQual
����� �&'�� � ������� �"'���� ������� � � �	'���� ��� �$� �

compositeQual
����� � bi-strict � � � � � � � � # � � ��� � � � � � � # 	��� � � � � # � compositeQual ��� � � � � � � ��

bitfield � � $ � �� � � bitfield � � $ � �� � � # � �� � � � ��� � � � � � � � �
unit bitfield � � $ � � $�� �� � � error	 ��� � ��� '

�
� � error �

This function is similar to compositeQual , with the exception that it also combines qualifiers.

4.6.4 Functions related to qualifiers
� � � � � %(')� � � %(')� � � % '�� �

� � � � noqual const volatile const-volatile �
� � � � � � �
noqual � noqual const volatile const-volatile �
const � const const const-volatile const-volatile �
volatile � volatile const-volatile volatile const-volatile �
const-volatile � const-volatile const-volatile const-volatile const-volatile �
� � � � � � �

COMBINE

QUALIFIERS

This function is bi-strict with respect to bottom and top elements and combines two qualifiers.

� � � � � %(')� � � % '�� � ��'$ � � $�� � � $ � � $�� � $�� �
QUALIFIER

INCLUSION

This binary relation between qualifiers checks whether its first argument is included in its second
argument.

� getQualifier ��� � �&'���� � ��� � � %(')� �
getQualifier ��� � � strict � � � � � � ��� � � 	��

obj � � $ � � $
array � � �� � � getQualifier ����� � �

GET

QUALIFIER

� getQualifier
����� �&'�� � � ���$� � %(')� �

getQualifier
����� � strict � � � � � � ��� � � 	��

� � getQualifier ����� �� � noqual �
� getQualifier

� �$� �&'�� � � � �$� � %(')� �
getQualifier

� �$� � strict � � � � � � ��� � � 	��
� � getQualifier ��� � �
bitfield � $ �� � � $ �

This function extracts the qualifier of a type. Function types are not qualified.

� qualify ��� � � % '�� � ��'�� � � ����� � � �	'�� � � ����� �
qualify ��� � � strict � � � $ � strict � � � � � � � � � � 	��

obj � � $! � � unit obj � � $ � $! �
array � � �� � � qualify ��� � $ � 3 � � � ! � unit array � � ! �� � � � �

QUALIFY

68 Chapter 4. Static semantic domains

� qualify
����� � %(')� � ��'���� ������� � � �	'�� � �����$� �

qualify
����� � strict � � � $ � strict � � � � � � ��� � � 	��� � qualify ����� $ �

� � error � �
� qualify

� �$� � %(')� � ��'�� � ������� � � �	'���� ������� �
qualify

� �$� � strict � � � $ � strict � � � � � � � � � � 	��� � qualify ����� $ �
bitfield � $! �� � � unit bitfield � $ � $! �� � � �

This function returns the � -qualified version of its second argument. An error occurs if a function type
is used.

4.6.5 Miscellaneous functions
� fix-parameter �&'�� � ������� ��'�� � ������� � %(')� �

fix-parameter � strict � � � � � � ��� � � 	��
obj � � $ � � � � $ #
array � � �� � � �

ptr � � � noqual #
func � � �� � � �

ptr � func � � $� ��� noqual # �

FIX

PARAMETER

This function fixes the type of a formal parameter by converting parameters of array or function types
to pointers.

� fresh-tagged � � � � ��'�� �
� fresh-untagged ��'����

FRESH TAGS

These two functions return fresh tags, named and nameless respectively. A fresh tag is meant to be
distinct from all other existing tags. The implementation of these functions is omitted.

� sizeof
����� �&'�� � � ����� � �

� sizeof ��� � �&'�� � � ����� � �
� sizeof

� �$� ��'���� � ����� ���

SIZES OF

TYPES

These are implementation-defined functions, returning the size in bytes of a given data, object and
member type. They are strict with respect to bottom and top elements.

� bits-in-byte � �SIZE OF BYTE

This is an implementation-defined constant element, representing the number of bits in a byte. Its
value must satisfy a number of requirements stated in the standard.

� isValidBitfieldSize � � ��'
isValidBitfieldSize � strict � � � � � � � � � � � � �� sizeof � int � � bits-in-byte � �

IS VALID

BIT-FIELD SIZE

This predicate takes an integer number and returns true if this can be used as the size of a bit-field,
false otherwise. Bit-field sizes must be non-negative and not larger than the number of bits in an
integer. The returned values must satisfy a number of requirements stated in the standard.

4.6. Auxiliary functions 69

� suffix � constant � character �
���

� prefix � constant � character �
� �

� isDecimal � integer-constant ��'
� isStringLit � expression ��'
� isWideStringLit � expression ��'
� lengthOf � string-literal ���

SYNTAX OF

CONSTANTS

These functions are related to the syntax of C constants. Function suffix returns the set of characters
that are contained in the suffix of a constant; valid suffix characters are “F”, “L” and “U”. Function
prefix acts similarly for constant prefixes; the only allowed prefix is “L”. The next three predicates
return true if their argument is a decimal integer constant, a string literal or a wide string literal,
respectively. Finally, function lengthOf returns the length of a string (or wide string) literal in char-
acters (or wide characters).

� traverse � � � � � � � � � � � � � �	� � � � � � ��� � � � � � ��� �
traverse � � � � �8� � � � � � � � � � � � �43 � � � � traverse � �) + � � � � � �
� � � � unit

�
TRAVERSE

This recursively defined function traverses function % � � � � over the range � � � � and applies
function ����� ��� ��� � to each element in this range. If no errors occur from any of these applications,
traverse returns a new function that contains the results of the applications in the range � � � � and
agrees with % outside this range. Otherwise, if any errors occur, traverse generates an error.

Chapter 5

Static semantics of declarations

This chapter defines the static semantics of C declarations, including external declarations and trans- CHAPTER

OVERVIEWlation units. In Section 5.1 the notions of semantic functions and equations are presented and the
adopted notation is defined. The static semantics of external declarations and normal declarations is
defined in Section 5.2 and Section 5.3 respectively.

5.1 Static semantic functions and equations

The static semantics of the C programming language result in the construction of static environments, SEMANTIC

FUNCTIONSwhich mainly contain type information about program identifiers. These environments are used in the
following stages of the semantic description, namely typing and dynamic semantics. Following the
denotational approach, the static semantics of the C programming language is defined by a number of
static semantic functions.

In general, a static semantic function maps well formed phrases, as these are specified by the
abstract syntax of C, to static semantic domains. For the construction of static environments, it is
possible to process only the parts of a C program that contain declarations, since these contain all
the necessary type information about program identifiers.1 It is reasonable, therefore, to restrict the
definition of static semantics to declarations. For each non-terminal symbol used in the grammar that
defines the abstract syntax of declarations (see Section 2.2.1), a static semantic function is defined
which maps well formed phrases generated by this non-terminal to an appropriately chosen static
semantic domain. This function is denoted by ��� � �� .

The definition of a static semantic function is given by a number of semantic equations. In the SEMANTIC

EQUATIONSabstract syntax, non-terminal symbols are defined in rules containing one or more alternative clauses.
For each such clause, the definition of the static semantic function requires the presence of a semantic
equation. Therefore, there will be as many semantic equations as there are alternative clauses for the
non-terminal in the abstract syntax. The right-hand side of each semantic equation may use the static
semantic meanings of subphrases, as expressed by the abstract syntax, respecting thus the composi-
tional character of denotational semantics. The definition of semantic equations may also be inductive,
based on the length of syntactic productions.

This small example clarifies the notation that will be used for the definition of static semantic NOTATION

EXAMPLEfunctions using equations. Consider the hypothetical non-terminal symbol non-term, defined in the
abstract syntax by the following rule:

1 This approach depends on deviation D-4 in Section 2.3, which guarantees that no program identifiers, other than labels,
can be defined in expressions or statements and, consequently, all type information can be gathered from declarations.

72 Chapter 5. Static semantics of declarations

�
non-term ��� � term non-term � (other-non-term) � �

where term and the parentheses are terminal symbols and other-non-term is another non-terminal
symbol. Notice that the definition of non-term is recursive, as specified by the first alternative clause.
Suppose that an appropriate static semantic domain for the range of non-term’s is 	 . Therefore, the
static semantic function for non-term maps well formed phrases generated by non-term to elements
of 	 . Similarly, suppose that 	 � is the range of the static semantic function for other-non-term. The
definition of the static semantic function for non-term can given as follows:

� ��� non-term �� ���
��� term non-term �� � (expression of type � , which may use expression ��� non-term �� of type �)��� (other-non-term) �� � (expression of type � , which may use expression ��� other-non-term �� of type � !)��� � �� � (constant expression of type �)

The first line states that the static meaning of non-term is represented by elements of domain 	 .
The next three lines are the semantic equations defining ��� non-term �� . They correspond directly to
the alternative clauses in the abstract syntax of non-term. A similar definition must be given for the
non-terminal symbol other-non-term.

There are some cases where the static meaning of a phrase must provide more than one pieces ofMULTIPLE

STATIC

MEANINGS
information. This can be achieved by using a product domain as the range of the semantic function;
this approach is followed in many cases in the semantic description that follows. However, in some
cases there is clearly one prominent static meaning, which is used most of the time, and one or more
other meanings which are rarely used. In this cases, it is convenient to split the semantic function
in two or more functions, each one returning a different aspect of the whole static meaning. The
function that corresponds to the prominent meaning can be still denoted by ��� � �� for brevity. Functions
corresponding to alternative meanings are denoted by prepending caligraphic letters, as in � ��� � �� .
Each function is defined separately, using a separate set of semantic equations.

5.2 External declarations
� ��� translation-unit �� � � � � (� �

��� external-declaration-list �� � rec ��� external-declaration-list �� � �
TRANSLATION

UNITS

The static meaning of a translation unit is defined as the type environment that reflects all the external
declarations that the translation unit contains. The environment that is used as a basis, i.e. before any
external declarations have taken place, is the empty type environment. The presence of function rec
is explained in Chapter 6. For the time being, let it be said that rec allows the type environment to
contain recursively defined types. The reader may want to treat it as the identity function, if that helps
his or her understanding.

� ��� external-declaration-list �� � � (� � � � � (� �
��� external-declaration �� � ��� external-declaration ��
��� external-declaration external-declaration-list �� �

��� external-declaration �� * ��� external-declaration-list ��

EXTERNAL

DECLARATION

LISTS

5.3. Declarations 73

The static meaning of an external declaration list is a function from environments to environments.2

The result of this function is the type environment that results from applying the list of external dec-
larations to an initial environment, which is given as the function’s argument. Notice the monadic
inverse composition operator “ � ” in the second semantic equation, which passes the result of its first
operand as an argument to its second operand.

� ��� external-declaration �� � � (� � � � � (� �
��� declaration �� � ��� declaration ��
��� declaration-specifiers declarator � declaration-list statement-list

� �� ��� � �
��� declaration-specifiers �� � 3 � � � � ���� ��� � � # ���� declarator �� � � � 3 � � � � �� !$# � � ��� � � ! 	��

func � � �� � � � � � � � � �� ! #	 ��� ����� '
�
� � error � �

EXTERNAL

DECLARA-
TIONS

The static meaning of an external declaration is again a function from environments to environments,
with the same behaviour as before. If the external declaration is simply a declaration, its meaning is
simply used. Otherwise, if it is a function definition, the function’s identifier and type are calculated
in � and � � respectively, and if it is really a function, the environment is updated.3

5.3 Declarations
� ��� declaration-list �� � � (� � � � � (� �

��� � �� � unit��� declaration declaration-list �� � ��� declaration �� * ��� declaration-list ��
DECLARATION

LISTS

The static meaning of a declaration list and the corresponding semantic function are very similar to
those of external declaration lists.

� ��� declaration �� � � (� � � � � (� �
��� declaration-specifiers init-declarator-list ; �� � ��� declaration-specifiers �� * ��� init-declarator-list ��

DECLARA-
TIONS

Still the same static meaning for declarations. Notice that the semantic functions for declaration-
specifiers and init-declarator-list, which are defined below, match in such a way as to allow such a
simple semantic equation for the declaration.

� ��� declaration-specifiers �� �
� (� � � �	'�� � � ���$� � � � (� � ��� � �"'�� � � ����� � � � � (� � � ��� (� ��� (� �

��� storage-class-specifier type-qualifier type-specifier �� ��� � �
��� type-specifier �� � 3 � � � � � � � � # ���� type-qualifier �� � 3 � � � ! � unit

� � ! ��� storage-class-specifier �� � � � � # � �

DECLARATION

SPECIFIERS

2 The presence of the error monad
�

in the semantic functions simply indicates that an error may occur when the static
semantics is determined. For brevity, the error monad is overlooked by the textual descriptions in the sequel. Without
this simplifying convention, the phrase “function from environments to environments” would have been “function from
environments to environments, allowing for errors”.

3 This approach allows the use of the typedef storage specifier in function definitions, as stated by deviation D-9 in
Section 2.3.

74 Chapter 5. Static semantics of declarations

The static meaning of declaration specifiers is a function that is somewhat more complicated than the
previous ones. The function’s argument is the initial type environment. The result is a product which
contains: the type that is specified; the meaning of the storage specifier that is applied; and two new
type environments which encorporate the effect of the declaration specifiers.

The reason why there are two such environments, instead of one, is the behaviour of the declaration
“struct tag;” which, as stated in - 6.5.2.3 of the standard, defines a new structure tag for an
incomplete structure type and overrides any definitions of the same tag in enclosing scopes. On the
contrary, “struct tag x;” does not have the same effect: if the tag has already been defined in an
enclosing scope, the previous definition is used and no new structure tag is defined. The meaning of
the declaration specifier, in this case “struct tag”, should clearly incorporate both effects. Thus,
the first element in the aforementioned pair is the environment that will result if the subsequent init-
declarator-list is not empty, whereas the second element is the result if it is empty. In most declaration
specifiers the two environments are equal.

� ��� storage-class-specifier �� � � (� � � � � ��'�� � � ���$� � � � � (� �
��� � �� ����� � � � � �� # � isComplete � � � � � � �
� ide normal � � ��� error��� typedef �� ����� � � � � �� # � � � �
� ide typedef � � ���

STORAGE

SPECIFIERS

The static meaning of a storage specifier is a function whose first argument is the initial type environ-
ment and its second argument is a pair, containing the identifier � that is defined and its type � .4 The
result is the type environment after � is appropriately associated with � .5 Only complete types can be
used with the empty storage specifier.6

5.3.1 Basic types and qualifiers
� ��� type-qualifier �� �&'�� � � ����� � � �	'�� � �����$� �

��� � �� � qualify noqual
��� const �� � qualify const��� volatile �� � qualify volatile��� const volatile �� � qualify const-volatile

TYPE

QUALIFIERS

The static meaning of qualifiers is a function from denotable types to denotable types. The result is
simply the qualified version of the function’s argument.

4 Again, a simplifying convention is used in the textual descriptions of higher-order functions, such as the meaning of
storage specifiers. A function

� � � � � � � � �+�+� � � � � � is considered in its informal description to have �
arguments of types � � . The reader should be warned that, for brevity, a function

� � � � ��� � � �+�+� ��� � � � is also
considered as a function of � arguments of types � � .

5 This approach is reasonable for the empty storage specifier and typedef, which are the only ones considered according
to deviation D-5 in Section 2.3.

6 This results from deviation D-2 in Section 2.3.

5.3. Declarations 75

� ��� type-specifier �� � � (� � � �	'�� � � ����� ��� (� ��� (� �
��� void �� ��� � � unit

�
obj � void noqual � � � #��� char �� ��� � � unit
�
obj � char noqual � � � #��� signed char �� �8� � � unit

�
obj � signed-char noqual � � � #��� unsigned char �� �8� � � unit

�
obj � unsigned-char noqual � � � #��� short int �� ����� � unit

�
obj � short-int noqual � � � #��� unsigned short int �� ��� � � unit

�
obj � unsigned-short-int noqual � � � #��� int �� ��� � � unit

�
obj � int noqual � � � #��� unsigned int �� �8� � � unit

�
obj � unsigned-int noqual � � � #��� long int �� ����� � unit

�
obj � long-int noqual � � � #��� unsigned long int �� ����� � unit

�
obj � unsigned-long-int noqual � � � #��� float �� �8� � � unit

�
obj � float noqual � � � #��� double �� ��� � � unit
�
obj � double noqual � � � #��� long double �� �8� � � unit

�
obj � long-double noqual � � � #��� struct-specifier �� � ��� struct-specifier ��

��� union-specifier �� � ��� union-specifier ��
��� enum-specifier �� � ��� enum-specifier ��
��� typedef-name �� ����� � ��� typedef-name �� � 3 � � � � unit

� � � � # �

TYPE

SPECIFIERS

The static meaning of a type specifier is a function that takes the initial environment as an argument
and returns a triple. The first returned element is the specified type, whereas the second and third
elements are the updated type environments (see the discussion in Section 5.3 where the meaning of
declaration specifiers was defined). The semantic equations are straighforward, with the exception of
structure, union and enumeration specifiers which are treated separately in following sections.

5.3.2 Initializations
� ��� init-declarator-list �� �&'���� � ����� � � � (� � � � � ��'�� � �����$� � � � � (� � �� � (� ��� (� � � � � (� �

��� � �� ��� � � �� � ��� � � # � unit � �
��� init-declarator init-declarator-list �� ��� � � � � � � � � # ���� init-declarator �� � � � 3 � � � � �� !$# �� � � � � � �� ! # 3 � � � ! � ��� init-declarator-list �� � � � � � ! � ! # � �

DECLARATOR

LISTS WITH

INITIALIZERS

The static meaning of a declarator list with initializers is used in connection with that of declaration
specifiers, as discussed in Section 5.3. Its arguments are: � , the specified type; � � , the method for
updating the environment; � � , the initial environment if at least one identifier is contained in the list;
and � � , the initial environment if the list is empty. The result is the updated environment. Notice that
when the list is empty � � is simply returned, otherwise it is not used at all.

� ��� init-declarator �� � � (� �"'���� � ����� � � � ��� � �"'�� � ������� �
��� declarator �� � ��� declarator ��
��� declarator = initializer �� ��� � � �� # ���� declarator �� � � �� # 3 � � � � �� !�# ���� initializer �� � � ! 3 � � � ! ! � unit

� � �� ! ! # � �

DECLARATORS

WITH

INITIALIZERS

The static meaning of a declarator with initializer is a function mapping the current environment � and
the specified type � to a pair, which contains the declared identifier and a (possibly) updated type. The

76 Chapter 5. Static semantics of declarations

only case when the updated type is different from � is when � is an incomplete array type and the
initializer specifies the number of its elements. In this case, the updated type is a complete array type.

� ��� initializer �� � � (� ��'�� � � ���$� � � �	'�� � ������� �
��� expression �� �8� � � � � � � � � � � 	��

array � � ! � � � � isCompatible � � ! obj � char noqual � ��� isStringLit � expression � � #� isCompatible � � ! obj � wchar t noqual � � � isWideStringLit � expression � �
� unit array � � ! lengthOf � expression � � unit �	 � � ��� � '

�
� � unit ���� � initializer-list

� �� ����� � � � � � ��� � � 	��
array � � ! � � � ��� initializer-list �� � � ! 3 � � � � unit array � � ! �� � �	 � � ��� � '

�
� � unit �

INITIALIZERS

The static meaning of an initializer is a function taking the environment and the specified type and
returning a (possibly) updated type, as discussed before. Notice that arrays can be initialized by string
or wide string literals, or by an explicit list of initializers.

� ��� initializer-list �� � � (� ��'���� � ����� � � � � �
��� initializer �� �8� � � � � � unit +
��� initializer , initializer-list �� �8� � � � � � ��� initializer-list �� � � 3 � � � � unit � +) �	� �

INITIALIZER

LISTS

The static meaning of an initializer list is a function returning the number of elements in the list.7

5.3.3 Structures and unions

Structure and union specifiers are probably the most complicated aspect to be defined in the semantics
of the type system of C. This is due to the presence of incomplete structure and union types and the
related intricacies in the standard.

� ��� struct-specifier �� � � (� � � �	'�� � � ����� � � (� � � (� �
��� struct I � struct-declaration-list

� �� ��� � �
� � �
� fresh tag tag-struct � 3 � ����� �
� � � � tagID tag-struct � 3 � � � ���� struct-declaration-list �� � � � �� � # 3 � � � � ! �� # ������ � � struct � � �� �' (� ! � �
� tag

� � 3 � � � � � unit
�
obj � � noqual � � � � � # � � � ���� struct � struct-declaration-list

� �� ��� � �
��� struct-declaration-list �� � � �� � # 3 � � � � ! �� # �
unit

�
obj � struct � fresh-untagged �� � noqual � � ! � !�# ���� struct I �� �8� � �

� � � tag tag-struct � 3 � � � � ! � # � � � �
� fresh tag tag-struct � 3 � � � � � unit
�
obj � � noqual � � ! � � # � �

STRUCTURE

SPECIFIERS

The static meaning of a structure specifier is a function with the same behaviour as the one for normal
type specifiers. The definition of this function is rather complicated and, for this reason, it is described
in detail. We distinguish between three cases of structure specifiers, as suggested by the abstract
syntax.

7 The arguments of this function are ignored in this implementation, because of deviation D-4 in Section 2.3. Also, notice
that deviation D-6 disallows the use of partially bracketted initializer lists.

5.3. Declarations 77

� Definition of a tagged structure. This is the most complicated case. Starting with the initial
environment � , a fresh structure tag is generated, resulting in ��� . The fresh tag, which con-
tains an incomplete type, is necessary in order to hide definitions of the same tag in enclosing
scopes.8 Let

�
be this fresh tag. Starting with the empty member environment, the structure

declaration list is processed and results in the correct member environment � for the structure.
The (possibly) updated type environment that results from this process is denoted by � � . Finally,
the complete type updates the tag in � � , resulting in ��� , and the correct final result is returned.

� Definition of an untagged structure. In this case, it is not necessary to define a fresh tag, since
untagged structure definitions cannot be recursive. The structure declaration list is again pro-
cessed, starting from the empty member environment. The result is the correct member envi-
ronment � and the (possibly) updated type environment � � . Finally, the structure type is put in
� � and is associated with a fresh unnamed tag.

� Declaration or use of a tagged structure. This is the only actual case where the two returned
environments are different, as discussed in Section 5.3. The first step is to lookup for the named
tag in the initial environment, with the side effect that a fresh tag is created, if it does not
exist locally or in any enclosed scope. Let be its type and � � the (possibly) updated type
environment. Obviously, � � is the resulting environment in the case “struct tag x;”, i.e.
when the init-declarator-list is not empty. On the other hand, a fresh tag must be generated in
the case “struct tag;”, i.e. when the init-declarator-list is empty. This results in � � , which
is the second type environment to be returned.

� ��� union-specifier �� � � (� � � �	'�� � � ����� � � (� � � (� �
��� union I � struct-declaration-list

� �� ��� � �
� � �
� fresh tag tag-union � 3 � � ��� �
� � � � tagID tag-union � 3 � � � ���� struct-declaration-list �� � � � �� � # 3 � � � � ! �� # ������ � � union � � �� �' (� ! � �
� tag

� � 3 � � � � � unit
�
obj � � noqual � � � � � # � � � ���� union � struct-declaration-list

� �� ��� � �
��� struct-declaration-list �� � � �� � # 3 � � � � ! �� # �
unit

�
obj � union � fresh-untagged �� � noqual � � ! � !$# ���� union I �� ����� �

� � � tag tag-union � 3 � � � � ! � # � � � �
� fresh tag tag-union � 3 � � ��� � unit
�
obj � � noqual � � ! � � # � �

UNION

SPECIFIERS

The static meaning for union specifiers, as well as its implementation, is very similar to that of structure
specifiers.

� ��� struct-declaration-list �� � � (� ��� � ��� � � � � (� �
� � ���	�
��� struct-declaration �� � ��� struct-declaration ��
��� struct-declaration struct-declaration-list �� � ��� struct-declaration �� * ��� struct-declaration-list ��

STRUCTURE

DECLARATION

LISTS

The static meaning of structure declaration lists is simply a function updating the member environment
and the type environment. Its definition is straightforward.

78 Chapter 5. Static semantics of declarations

� ��� struct-declaration �� � � (� ��� � ��� � � � � (� ��� � ���	�
��� struct-specifiers struct-declarator-list �� ��� � � �� # ���� struct-specifiers �� � 3 � � � � � !�# � ��� struct-declarator-list �� � ! � � 3 � � � ! � unit

� � ! �� !$# � �
STRUCTURE

DECLARA-
TIONS

The static meaning of structure declaration lists is again a function updating the member environment
and the type environment. The latter is updated by processing the struct-specifiers, where as the former
by processing the struct-declarator-list.

� ��� struct-specifiers �� � � (� � � �	'�� � � ���$� � � (� �
��� type-qualifier type-specifier �� ��� � �

��� type-specifier �� � 3 � � � � � � � � # � ��� type-qualifier �� � 3 � � � ! � unit
� � ! � � # � �

STRUCTURE

SPECIFIERS

Structure specifiers can be viewed as a special case of declaration specifiers, with two exceptions
which affect the semantic function. First, no storage specifiers are allowed and the returning product
is greatly simplified. Second, only one resulting environment is necessary, because there can be no tag
declarations with empty declarator lists.

� ��� struct-declarator-list �� � � (� ��'�� � � ����� � � � ��� � � ��� � ���	�
��� struct-declarator �� ����� � � � � � � ���� struct-declarator �� � � 3 � � � � �� !$# � � � �
� � ! � ���� struct-declarator struct-declarator-list �� ��� � � � � � � � ���� struct-declarator �� � � 3 � � � � �� !$# � � � �
� � ! � 3 � � � ! � ��� struct-declarator-list �� � �(� ! � �

STRUCTURE

DECLARATOR

LISTS

The static meaning of a structure declarator list is a function mapping the current type environment, the
specified type and the initial member environment to an updated member environment. Its definition
is straightforward.

� ��� struct-declarator �� � � (� ��'�� � � ����� � � � ��� � � '�� � � � �$� �
��� declarator �� ��� � � � � ���� declarator �� � � 3 � � � � �� ! # ��

isComplete � � ! � � error � � � � � ! 	��� � unit
� � � #	 ��� ����� '

�
� � error ���� declarator : constant-expression �� ����� � � � ���� declarator �� � � 3 � � � � �� !$# ���� � � constant-expression � � � 3 � � � ��

isValidBitfieldSize � � � � error � ��� � � ! 	��
obj � int $ � � unit

� � bitfield � int $ �� � #
obj � unsigned-int $ � � unit

� � bitfield � unsigned-int $ �� � #	 ��� ����� '
�
� � error � �

STRUCTURE

DECLARATORS

The static meaning of a structure declarator is a function taking as arguments the current type environ-
ment and the specified type. It returns the declared identifier and the associated member type. Notice
that in the case of ordinary fields only complete object types are allowed. Furthermore, in the case
of bit-fields only int, and unsigned int are allowed.9 The dynamic meaning function ��� � � � simply
returns the value of a constant expression and will be defined in Part IV.

8 It is also necessary that a fresh tag is visible in the structure declaration list, to allow recursively defined structures.
9 Note that signed int bit-fields cannot be defined using this approach. The problem is due to the fact that signed int and

int are identified as the same type in '���� � ��� � . See deviation D-7 in Section 2.3.

5.3. Declarations 79

5.3.4 Enumerations
� ��� enum-specifier �� � � (� � � �	'���� � ���$� � � (� � � (� �

��� enum I � enumerator-list
� �� �8� � �

��� enumerator-list �� � � � � � # 3 � � � � ! � �� # ������ � � enum � � �' (� ! � �
� tag
� � 3 � � � � � unit

�
obj � � noqual � � � � � # � ���� enum � enumerator-list

� �� ��� � �
��� enumerator-list �� � � � � � # 3 � � � � ! � �� # �
unit

�
obj � enum � � � noqual � � ! � ! # ���� enum I �� ����� � � � � tag tag-enum � 3 � � � � ! � # � unit

�
obj � � noqual � � � # �

ENUMERATION

SPECIFIERS

The static meaning of an enumeration specifier is again a function with the same behaviour as the one
for normal type specifiers. The standard forbids the declaration of incomplete enumerations and, there-
fore, the two returned environments are equal. There are again three cases of enumeration specifiers
but the definition of their meanings is relatively straightforward. Notice that the values of enumerators
start with the number zero.

� ��� enumerator-list �� � � (� � � ('��6� � � � � � (� � � ('���� � �
��� enumerator �� � ��� enumerator ��
��� enumerator enumerator-list �� � ��� enumerator �� * ��� enumerator-list ��

ENUMERATOR

LISTS

The static meaning of an enumerator list is a function updating the type environment, the enumeration
environment and the constant value that will be given to the next enumeration constant. Its definition
is straghtforward.

� ��� enumerator �� � � (� � � ('	����� � � � � (� ��� ('��6��� �
��� I �� ��� � � � �� # �� � �
� ide enum-const � � ��� 3 � ��� ! � � � �
� � � 3 � � � ! � unit

� � ! � ! ��) + # � ���� I = constant-expression �� ��� � � � �� # ���� � � constant-expression � � � 3 � � � �� � �
� ide enum-const � � ��� 3 � � � ! � � � �
� � � 3 � � � ! � unit
� � ! � ! �) + # � � �

ENUMERATORS

The static meaning of enumerators is the same as that of enumerator lists. Just notice that if a constant
expression is specified as the value for the enumeration constant, its value is used instead of the
parameter and numbering continues from the successor of this value.

80 Chapter 5. Static semantics of declarations

5.3.5 Declarators
� ��� declarator �� � � (� ��'�� � � ����� � � � ��� � �"'�� � ������� �

��� I �� �8� � � � � � unit
� � �� #��� declarator [constant-expression] �� ��� � � � � � � � � � � 	��� � ��� � � constant-expression � � � 3 � � � �� ��� � � � ��� declarator �� � array � � �� � error �	 � � ��� � '

�
� � error��� declarator [] �� ����� � � � � � ��� � � 	 �� � ��� declarator �� � array � � � �	 � � ��� � '
�
� � error��� * type-qualifier declarator �� �8� � � � � ���� type-qualifier �� obj � ptr � � � noqual � 3 � � � ! � ��� declarator �� � � ! ���� declarator (parameter-type-list) �� �8� � � � � �

rec ��� ��� parameter-type-list �� � � � � � 3 � � � � ���� parameter-type-list �� � � � � 3 � � � � � ��� � � 	 �
obj � � $ � � ��� declarator �� � func � � �� �	 ��� ����� '

�
� � error � �

DECLARATORS

The primary static meaning of a declarator is a function taking as arguments the current type environ-
ment and the specified type. It returns the declared identifier and its type. Its definition is relatively
straightforward. In array declarators, if a constant value is specified within the brackets, it is evaluated
using the dynamic semantic function � � � � � . In function declarators, a new scope is opened for the
function prototype and the type environment ��� that corresponds to it is calculated. The parameter
type list is then processed.

� � ��� declarator �� ��'
� ��� I �� � true
� ��� declarator [constant-expression] �� � false
� ��� declarator [] �� � false
� ��� * type-qualifier declarator �� � false
� ��� declarator (parameter-type-list) �� � false

DECLARATORS�
-MEANING

This alternative is an auxiliary static meaning for declarators, represented by a truth value. It is true if
the declarator consists of a single identifier, false otherwise. This meaning is only used to determine
whether a declarator is a leave at the abstract syntax tree.

� � ��� declarator �� � � (� � � � � (� �
� ��� I �� ����� � error
� ��� declarator [constant-expression] �� � � ��� declarator ��
� ��� declarator [] �� � � ��� declarator ��
� ��� * type-qualifier declarator �� � � ��� declarator ��
� ��� declarator (parameter-type-list) �� � � � ��� declarator �� � ��� ��� parameter-type-list �� 	� ��� declarator ��

DECLARATORS

-MEANING

This alternative static meaning for declarators is used for determining the type environment that is as-
sociated with function prototype scopes. It is a function from type environments to type environments.
Assuming that the declarator is used for the declaration of a function, the argument is the initial type
environment just before the function’s parameters are declared. In other words, it is assumed that a
new scope must already be open for the function definition and must be passed here. The result is the

5.3. Declarations 81

initial type environment for the function’s body, after the function’s parameters have been declared.
An error occurs if the declarator is not used for the definition of a function.

� ��� parameter-type-list �� � � (� � � � 	 � � � ��� � 	 � �
��� � �� ��� � � unit��� ... �� ��� � � ellipsis��� parameter-declaration parameter-type-list �� ��� � � � ��� parameter-declaration �� � � * � ��� parameter-type-list �� � �

PARAMETER

TYPE LISTS

The static meaning of parameter type lists is a function taking the type environment for a function pro-
totype scope and returning a function which updates the function prototype. Its definition is straight-
forward.

� � ��� parameter-type-list �� � � (� � � � � (� �
� ��� � �� � unit
� ��� ... �� � unit
� ��� parameter-declaration parameter-type-list �� � � ��� parameter-declaration �� * � ��� parameter-type-list ��

PARAMETER

TYPE LISTS

-MEANING

This alternative static meaning for type parameter lists is used for determining the type environment
that is associated with function prototype scopes. It is a function from type environments to type
environments. The updated type environment contains the declaration of parameters contained in the
parameter type list.

� ��� parameter-declaration �� � � (� � � � 	 � � � ��� � 	 � �
��� declaration-specifiers declarator �� ��� � � � � ���� declaration-specifiers �� � 3 � � � � �� � � � � � # ���� declarator �� � � 3 � � � � �� ! # �������� � $ # � fix-parameter � !' (� � � � ���� declaration-specifiers abstract-declarator �� ����� � � � ���� declaration-specifiers �� � 3 � � � � �� � � � � � # ���� abstract-declarator �� � � 3 � � � ! �������� � $ # � fix-parameter � !' (� � � � �

PARAMETER

DECLARA-
TIONS

The static meaning of parameter declarations is similar to that of parameter declaration lists. Just
notice two things. First, since the type environment � has already been fixed, it already contains
whatever identifiers may be defined because of declaration-specifiers and the results � � and � � need
not be used . Second, fix-parameter is used, in order to translate array and function types to pointer
types.

� � ��� parameter-declaration �� � � (� � � � � (� �
� ��� declaration-specifiers declarator �� ��� � �

��� declaration-specifiers �� � 3 � � � � �� � � � � � # ���� declarator �� � � � 3 � � � � �� !$# �������� � $ # � fix-parameter � !' (��� � �
� ide normal � obj � � $ ����� � �
� ��� declaration-specifiers abstract-declarator �� ��� � �

��� declaration-specifiers �� � 3 � � � � �� � � � � � # � unit � � �

PARAMETER

DECLARA-
TIONS

-MEANING

82 Chapter 5. Static semantics of declarations

This alternative static meaning for parameter declarations is again used in for determining the type en-
vironment that is associated with function prototype scopes. It is similar to the corresponding meaning
for parameter type lists.

� ��� abstract-declarator �� � � (� ��'���� � ����� � � �	'���� ������� �
��� � �� ����� � unit��� abstract-declarator [constant-expression] �� ����� � � � � � ��� � � 	 �� � ��� � � constant-expression � � � 3 � � � �� ��� � � � ��� abstract-declarator �� � array � � �� � error �	 � � ��� � '

�
� � error��� abstract-declarator [] �� ����� � � � � � � � � � 	��� � ��� abstract-declarator �� � array � � � �	 � � ��� � '
�
� � error��� * type-qualifier abstract-declarator �� �8� � � � � ���� type-qualifier �� obj � ptr � � � noqual � 3 � � � ! � ��� abstract-declarator �� � � ! ���� abstract-declarator (parameter-type-list) �� ����� � � � �

rec ��� ��� parameter-type-list �� � � � � � 3 � � � � ���� parameter-type-list �� � � � � 3 � � � � � ��� � � 	 �
obj � � $ � � ��� abstract-declarator �� � func � � �� �	 ��� ����� '

�
� � error � �

ABSTRACT

DECLARATORS

The static meaning of abstract declarators is similar to that of declarators, with the exception that no
identifier is returned. Its definition is similar also.

5.3.6 Type names
� ��� typedef-name �� � � (� � � �	'���� �����$� �

��� I �� �8� � � � � � ide � 3 � � , � � ��� � , 	��
typedef � � � � unit �	 � � ��� � '

�
� � error �

TYPE

SYNONYMS

The static meaning of a type synonym, i.e. an identifier declared with the typedef storage specifier, is
simply a function from the current type environment to the type denoted by the synonym. An error
occurs if the identifier is not a type synonym.

� ��� type-name �� � � (� � � �	'���� � ����� �
��� type-qualifier type-specifier abstract-declarator �� ����� �

��� type-specifier �� � 3 � � � � � � � � # � ��� type-qualifier �� � 3 � � � ! � ��� abstract-declarator �� � � � ! � �
TYPE NAMES

The static meaning of a type name is a function from the current type environment to the type de-
noted by the type name. Notice that, while processing the type name, the type environment is possibly
updated.10 However, this updated environment is discarded, in accordance to deviation D-4 in Sec-
tion 2.3.

10 To be precise, the only modification in the type environment that is allowed by the standard at this point is the definition
of a structure, union or enumeration tag.

Chapter 6

Static semantics of recursively defined types

This chapter deals with the static semantics of recursively defined types. Section 6.1 identifies a CHAPTER

OVERVIEWnumber of problems in the present static semantic by studying examples of recursively defined types.
It also motivates the changes that take place in the following sections. In Section 6.2, the domain
�
� 	 that represents type environments is revisited and replaced by a modified version, suitable for

recursively defined types. Finally, in Section 6.3 the process of fixing type environments is formally
defined.

6.1 Some examples

The simplest example of a recursively defined structure type is given in the following declaration: SIMPLE

RECURSION

struct tag { struct tag * p; };

that is, a structure type containing a pointer to a similar structure. The static semantics of C, as defined
in the previous chapters, can only associate “tag” with type , where:

 struct tagged “tag” � � � � � “p” �� obj ptr obj � � noqual ��� � noqual � � �
 �
 struct tagged “tag” � � � ��� �

where � is the unique number associated with this tag. Note that � is the incomplete type associated
with the fresh tag that is declared upon entering the structure declaration list. Clearly this is not the
intended static meaning of this declaration. The structure’s member “p” should not be a pointer to an
incomplete structure, but a pointer to the complete structure type containing it. It is easy to see that
the present static semantics fails to correctly represent recursively defined types.

A correct static meaning for this declaration must associate “tag” with type , where is the least LEAST FIXED

POINTSsolution of the equation:

 struct tagged “tag” � � � � � “p” �� obj ptr obj � noqual ��� � noqual � � �

Since is an element of domain ���� � � �"! , it possible to express it by means of the least fixed point
operator, applied to a function from ���� ��� � ! to ���� � � �"! :

fix � �� � struct tagged “tag” � � � � � “p” �� obj ptr obj � noqual ��� � noqual � � �

84 Chapter 6. Static semantics of recursively defined types

In a similar way it is possible to correctly define the static semantics of mutually recursive typeMUTUAL

RECURSION definitions. Consider the following declaration list, defining two structure tags “tagx” and “tagy” :

struct tagx { struct tagy * py; };
struct tagy { struct tagx * px; };

The types that a correct static meaning of this declaration list must associate with the two tags are
again those given by the least solution of the following system of equations:

 �
 struct tagged “tagx” � � � � � “py” �� obj ptr obj � � noqual ��� � noqual � � �
 �
 struct tagged “tagy” ��� � � � “px” �� obj ptr obj � � noqual ��� � noqual � � �

In order to express this solution as a closed formula, it is necessary to group the two types in a pair
and apply the least fixed point operator to a function over pairs of types. The result of the expression:

fix � � � � � ��� �
� struct tagged “tagx” � � � � � “py” �� obj ptr obj � � noqual ��� � noqual � � �
struct tagged “tagy” ��� � � � “px” �� obj ptr obj � � noqual ��� � noqual � � ��� �

is the pair that corresponds to the least solution of the system, and it is easy to extract its two elements.

This approach can be generalized for any finite number of types defined by mutual recursion. AsGENERALIZA-
TION shown above, a tuple must be used to group the types before the least fixed point operator is applied.

However, this may be a problem in the definition of static semantics, since the number of types that
participate in the multiple recursion is not fixed. Even worse, this number depends on the syntax of
C programs. In order to avoid introducing products with a variable number of elements, a different
solution is adopted, a variation of which was first proposed in [Seth80]. Instead of applying the least
fixed point operator to a function that updates a tuple of types, the proposed solution applies it to a
function updating the whole type environment.

Consider again the first given example of a single recursively defined data type. In order to obtain
the correct data type for “tag” , the following algorithm is used, which will be called type environment
fixing. The first few steps and the limit are shown in Figure 6.1. The static meaning of the declaration
is first applied to the initial type environment and the result is a type environment containing the
aforementioned incorrect type for “tag” . This can be used as a first approximation. (In Figure 6.1
the empty environment is used as the initial environment in “Pass #0” and the first approximation is
labeled “Pass #1”.) Subsequently, let us consider applying the static meaning of the declaration again,
this time using the first approximation as the initial type environment. Ignoring for the moment the
error that would occur from the redefinition of “tag” , the new type environment would be a better
approximation. As shown in Figure 6.1 under the label “Pass #2”, the type associated with “tag” in
this approximation would be a more complete structure type, containing a pointer to the structure type
that was given by the previous approximation. By repeating this, the type environment that would
result in each step would be a better approximation of the previous one. The least upper bound of this
infinite sequence of type environments would contain the correct type information for “tag” . In this
way it is possible to obtain the correct type information for any number of types given by mutually
recursive definitions.

6.1. Some examples 85

Figure 6.1: Example of type environment fixing (simple).

(Pass #0) “tag”
� �

(Pass #1) “tag”
� struct � tagged � “tag” + � �� � �
� � � � “p”
� obj � ptr � obj � struct � tagged � “tag” + � � � noqual ��� noqual � �

(Pass #2) “tag”
� struct � tagged � “tag” + � �� � �
� � � � “p”
� obj � ptr � obj � struct � tagged � “tag” + � �� � � noqual ��� noqual � �

(Pass #3) “tag”
� struct � tagged � “tag” + � �� � �
� � � � “p”
� obj � ptr � obj � struct � tagged � “tag” + � �� � � noqual ��� noqual � �

�+�+�

(LUB) “tag”
� struct � tagged � “tag” + � ���� �
� � � � “p”
� obj � ptr � obj � struct � tagged � “tag” + � �� � � noqual ��� noqual � �

However, there is still a minor problem with the proposed solution. The functions for updating PROBLEMS IN

UPDATINGtype environments, defined in Section 4.5.1, generate an error if an identifier or a tag that has already
been defined is redefined in the same scope. Obviously, type environments do not know of “better
approximations”, except for the simple case of structure or union tags that have just been declared.
This must be corrected before the proposed solution for recursively defined types can be adopted.

The use of the least fixed point operator to take the least upper bound of the infinite sequence of
generated type environments in the algorithm described before, leads to the adoption of the domain
ordering relation for expressing “better approximations” of types and type environments. The relation
 �
 	 is taken to mean that “data type 	 is at least as good an approximation as � ”. This is
generalized for other kinds of types. Also, for the case of type environments, the domain ordering
specifies that � �
 � 	 if and only if, for every identifier � , the type that � 	 associates with � is at
least as good an approximation as the one that �
� associates with � . The domain ordering that has
been defined in Chapter 4 needs not be modified, since it expresses correctly this notion of “better
approximation”.

One might consider that, as a conclusion from the previous discussion, the problems in updating A TRICKY

EXAMPLEtype environments could be solved by redefining the update operations, in such a way as to allow
updating any identifier with a “better approximation” of its associated type. However, this is not true,
as will be shown in the following example. Let us consider the following situation, in which the
declaration list that is of primary interest is located in an enclosed scope. In addition to that, notice
that the recursively defined structure type already exists in the parent scope and that identifier “a”
should be associated with the structure containing “x” , not “p” .

struct tag { int x; };
{

struct tag a;
struct tag { struct tag * p; };

}

86 Chapter 6. Static semantics of recursively defined types

Figure 6.2: Example of type environment fixing (tricky).

(Outer, #0) “tag”
� struct � tagged � “tag” + � ���� �
� � � � “x”
� obj � int noqual � �

(Inner, #1) “a”
� obj � struct � tagged � “tag” + � ����	� noqual �
“tag”
� struct � tagged � “tag” � � �� �� �
� �� � � “p”
� obj � ptr � obj � struct � tagged � “tag” � � � � noqual ��� noqual � �

(Inner, #2) “a”
� obj � struct � tagged � “tag” � � �� �� � noqual �
“tag”
� struct � tagged � “tag” � � �� �� �
� �� � � “p”
� obj � ptr � obj � struct � tagged � “tag” � � �� �� � noqual ��� noqual � �

� �+�

(Inner, LUB) “a”
� � (LUB of unrelated types, see footnote 1)

“tag”
� struct � tagged � “tag” � � �� �� �
� �� � � “p”
� obj � ptr � obj � struct � tagged � “tag” � � �� �� � noqual ��� noqual � �

(Inner, correct) “a”
� obj � struct � tagged � “tag” + � �� � � noqual �
“tag”
� struct � tagged � “tag” � � �� �� �
� �� � � “p”
� obj � ptr � obj � struct � tagged � “tag” � � �� �� � noqual ��� noqual � �

By applying the proposed solution to the inner declaration list, one ends up with the infinite se-
quence of type environments that is shown in Figure 6.2. It should be mentioned that, for the time
being, the update operation for type environments unconditionally replaces type information if an
identifier has already been defined. The initial type environment for the inner declaration list corre-
sponds to a newly opened scope, based on the environment resulting from the outer declaration. It is
labelled “Outer, #0” in the figure. The first step is labelled “Inner, #1”, and so on for subsequent steps.

The first thing to notice is that, in the first step the type associated with “a” is correct and the type
associated with “tag” is indeed a first approximation. However, the second step incorrectly associates
“a” with the newly defined structure type, and this association is repeated in all subsequent steps. On
the other hand, the types associated with “tag” are correct. The result of this inconvenient situation
is that in the final type environment, taken as the least upper bound of the infinite sequence, the type
associated with “tag” would be correct but the type associated with “a” would be the least upper
bound of the two unrelated structure types, which is clearly wrong.1

After all this, it is evident that the problem lies on the behaviour of the update operation on typeUPDATING

MECHANISM environments, in the case of identifier redefinition. Specifically, there is a conflict among several
desired cases of redefinition, as summarized in the following requirements:

(R1) Identifier redefinition should not normally be allowed, i.e. the static meaning of “int x;
double x;” should clearly be an error. This requirement is satisfied by the present static
semantics.

1 The final environment in Figure 6.2 is not entirely correct. The least upper bound for “a” is not the top element, since
the two types are not completely unrelated. However, it is clearly not a valid denotable type.

6.2. Type environments revised 87

Figure 6.3: Intended behaviour of type environment updating.

Ordinary update

� � �
� ide � � normally while fixing

existing ��� existing
���� existing ��� existing

����
existing � new impossible error impossible update

existing
�� new update error impossible ignore

Tag update

� � �
� tag � � normally while fixing

existing ��� existing
���� existing ��� existing

����
existing � new � jd(existing) impossible update impossible update

existing � new � � jd(existing) impossible error impossible update

existing
�� new update error impossible ignore

(R2) It should be allowed to redefine structure or union tags, on condition that they were previously
just declared, as in the case of “struct tag; struct tag � int x;

�
;”. This is also

satisfied by the present static semantics.
(R3) During the fixing process, redefinition of an identifier using a “better approximation” should be

allowed and performed, as in the case of “tag” in Figure 6.2, pass #2. This requirement is not
satisfied by the present static semantics.

(R4) During the fixing process, redefinition of an identifier using a type that is not a “better approx-
imation” should be allowed but ignored, as in the case of “a” in Figure 6.2, pass #1. This
requirement is not satisfied by the present static semantics.

It is not hard to see that requirements R1 and R2 are in conflict with R3 and R4. There seems
to be no plausible solution without taking special measures for the fixing process. One approach to
fix this problem is to include information about the fixing process in type environments. As shown
in the next section, a truth value is included to determine whether the fixing process has started.
The update operations should also be revised to use this information in such a way as to satisfy the
aforementioned requirements. Figure 6.3 shows the desired behaviour for the update operations on
type environments. By “jd(existing)” it is meant that the existing value is a structure or union tag that
has just been declared; as will be seen in the following section, the function isDeclaredTag is used
to determine this. Possible behaviours are: update, i.e. redefine the identifier; ignore, i.e. keep the
existing definition; error, i.e. disallow the redefinition and generate an error; and impossible, i.e. a
situation that can never happen or, if it does, the result of the operation is of no importance.

6.2 Type environments revised

In the light of the conclusions drawn in the previous section, the domain �
� 	 that represents type SUMMARY OF

CHANGESenvironments is subject to revision. The main modification that is required is the addition of informa-
tion about the fixing process. Additional operations must be defined in relation with this information.

88 Chapter 6. Static semantics of recursively defined types

Some of the existing operations, such as ordinary and tag update, must change in order to use the
newly available information. Others, such as the raw lookup operations, must only change slightly,
because of the modification in the domain’s definition. Finally, some operations remain unchanged
and will not be repeated in this section. The update operations are examples of the last category.

� � � � (� � � ��� � ��'���� � # ��� �� � � � � ��'�� � � ����� ���' ��� (�
DEFINITION

A truth value is added as an element of the product. It will be true if the fixing progress is under way,
false otherwise.

� � � � � (�
� � � � � � false � #

EMPTY

ENVIRONMENT

The empty environment is not being fixed, when it is constructed.

� � � � raw ide �,� � (� � � � � ��'�� � � # ���
� � � raw ide � ������ � � � � � � � � � � � # � �' (� ��� � ���� � � ��� � � � � ���� � � � � � � raw ide � error

ORDINARY

RAW LOOKUP

This is just a minor modification, in order to allow for the extra element
�
� � � of the type environment.

� � � � raw tag �,� � (� � ��� � ��'���� � �����
� � � raw tag � ������ � � � � � � � � � � � # � �' (� � � � ���� � � � � � � � � ���� � � � � � � raw tag � error

TAG RAW

LOOKUP

A minor modification again.

� � � �
� ide � �,� � (� � � � � � '���� � # ��� � � � � (� �
� � �
� ide

, � ������ � � � � � � � � � � � # � �' (� � �
� � � � � � �� , � � unit � � � �
�7# � ��� � ��� � � unit

� ��� � �
� , � ��� � � � �� � � # error

ORDINARY

UPDATE

This is one of the operations that changed the most. It reflects the requirements that were summarized
in the upper part of Figure 6.3. In order to simplify the operation’s definition, the two impossible cases
on the upper row are treated as if they were update, and the one on the lower row as if it was ignore.
It is easy to see that, for the case

�
� � �
 false , the result is the same as in the old definition.

� � � �
� tag � � � � (� � ��� � �"'�� � ������� � � � � (� �
� � �
� tag

� � ������ � ��� ��� � � � � � � # � �' (� � �
� � � � � � �� � � � unit � � � �
� # � � � � ��� ��# isDeclaredTag � � � � � � unit

� � � � � � �
� � � � � � � � � # error

TAG UPDATE

This operation also required a lot of changes. It reflects the requirements summarized in the lower
part of Figure 6.3. In order to simplify the operation’s definition, the two impossible cases on the two
upper rows are treated as if they were update, and the one on the lower row as if it was ignore. It is
easy to see again that, for the case

�
� � �
 false , the result is the same as in the old definition.

6.3. The fixing process 89

� � � �
� fresh tag � � � � (� � ��� � � '���� '���� � � � � � (� �
� � �
� fresh tag

� � �������� � � ��� � � � � � � # � �� � � � �
' (� ��� � �
	��

� � � ��� � �	 �
tag-struct � � � �
� tag struct � fresh-tagged

� � ���
tag-union � � � �
� tag union � fresh-tagged

� � ���	 ��� ����� '
�
� � error

struct � � �� � � � � � tag-struct � � unit � error
union � � �� � � � � � tag-union � � unit � error
enum � � � � � � � tag-enum � � unit � error	 ��� ����� '

�
� � error

FRESH TAG

A minor modification, in order to allow for the extra element
�
� � � of the type environment.

� � � � � (� � � (�
� � � � � � false � #

OPEN SCOPE

Newly opened scopes are not being fixed.

� � � � � (� � � (�
� � � ��� ��� � � � � � � � � � � # � � ' (� �

CLOSE SCOPE

A minor modification again.

� isLocal � � � ide � � � (� � � � � ��'
isLocal � � � ide � � ����� � � � � � � � � � � � # � � ' (� � � � � ��� �

LOCAL

ORDINARY

� isLocal � � � tag � � � (� � ��� � ��'
isLocal � � � tag � � ����� � � � � � � � � � � � # � � ' (�� � � � � ��� �

LOCAL TAG

More minor modifications.

� init-fix � � (� � � � � (� �
init-fix � � ����� � � � � � � � � � � � # � � ' (�� � � �

� � unit
� � � � � true � � # error

INITIALIZE

FIXING

This function sets the truth value for fixing to true , declaring the start of the fixing process. An error
occurs if the environment is already being fixed.

6.3 The fixing process

The algorithm for fixing type environments has been described informally in Section 6.1. In this
section it is formally defined. In addition, it is specified where and when this fixing process takes
place.

90 Chapter 6. Static semantics of recursively defined types

� rec � � � (� � � � � (� � � � � (� � � � � (� �
rec ��� � � � � � ����� 9 � � � 3 init-fix

' (
mclo 9 �

DEFINITION

Function rec performs the fixing of type environments for recursively defined types. It takes two
arguments: the static semantic meaning of a declaration list, i.e. a function � from type environments
to type environments; and an initial type environment � . It returns the type environment that results
from first applying � to � and then fixing all recursively defined types. The monadic closure operator
mclo is used in this function’s definition. The starting environment for the closure is
 , i.e. the type
environment which results from the first pass in Figure 6.1. Notice also how
 is initialized for fixing.
In order to verify that the result of the monadic closure operation is indeed the least upper bound of
the infinite sequence of gradually fixed environments, recall the definition of mclo and clo :

mclo
 �
 clo
 � � � � � � � �

��

��� �
� � � � � � � � �

The definition is somewhat perplexed by the fact that errors are allowed; however, it is easy to see that
the least upper bound of the infinite sequence is taken.

The equation for the static meaning of translation-unit, as shown in Section 5.2, involves a call toWHERE AND

WHEN rec . The same is true for declarator and abstract-declarator in Section 5.3.5, when function declara-
tions are involved. Its presence is obviously necessary at these points, since recursive definitions may
occur at file scope or function prototype scope. In general, rec must be called whenever a new scope
that may contain recursive type definitions is opened. However, as was evident in Chapter 5, the pro-
posed static semantics only opens new scopes when necessary information can only be obtained from
them. Therefore, only file scope and function prototype scopes need to be fixed. For all other scopes
including function scope and block scopes, rec is called in the typing inference rules, presented in
Part III and in the equations for the dynamic semantics, presented in Part IV.

Part III

Typing semantics

Chapter 7

Typing judgements

This chapter introduces the notions of typing semantics, typing judgements and typing derivations, CHAPTER

OVERVIEWthat will be the primary issues of interest in Part III. In Section 7.1 a brief introduction is attempted.
Section 7.2 describes the typing judgements that are used throughout Part III in the definition of C’s
typing semantics. Finally, in Section 7.3 a number of issues is discussed, related to the uniqueness of
typing results and typing derivations for given program phrases.

7.1 Introduction to typing

Typing semantics is used in the formal definition of programming languages in order to define aspects
that cannot be expressed by a context-free grammar. The primary aim of a language’s typing semantics
is the association of phrases, participating in syntactically well-formed programs, with phrase types.
In this way, valuable information is given concerning the meaning of program phrases. In simple
programming languages, typing semantics can often replace the language’s abstract syntax completely.
That is, the syntactic productions can be defined at the same time when phrase types are associated
with program phrases. In this case, the language’s static semantics is also defined as part of the typing
semantics. However, in the case of a complex programming language such as C, the three phases of
abstract syntax, static semantics and typing need be separate.

Since the primary interest in typing is to define a relation between program phrases and phrase TYPING

JUDGEMENTStypes, a formal way is needed to describe this relation. This is achieved by means of typing judge-
ments, also called in literature typing assertions. The most common form of a typing judgement is the
following:

� � � � �

where
�

is a type assignment,1 i.e. a given association of identifiers with types, � is a program phrase
and � is a phrase type. The intuitive meaning of this judgement is that � is a well-typed phrase of type
� , under the assumptions stated in

�
. In specifying the typing semantics of a complex programming

language, additional forms of typing judgements may be necessary. Typing judgements may be viewed
as truth value predicates, that can be true or false . A typing judgement is true if it can be proved to
hold using the language’s typing semantics. Otherwise, it is false .

The typing semantics of a programming language is most commonly defined as a consistent set TYPING RULES

of axioms and inference rules, which are commonly called typing rules. Axioms are typically used
to define the typing semantics of simple phrases, whereas inference rules are used in the case of

1 Type assignments are also called typing contexts in literature.

94 Chapter 7. Typing judgements

Figure 7.1: Typing semantics for a simple hypothetical expression language.

Typing rules

� � � � exp � int � (const)
� � � int � is in

�

� � � � exp � int � (ide)

� ��� � � exp � int � � ��� � � exp � int �
� ��� �)�� � � exp � int � (plus)

� ��� � � exp � int � � ��� � � exp � int �
� ��� � ��� � � exp � bool � (equal)

� ��� � exp � bool � � ��� � � - � ��� � � -
� � if � then �

�
else �

� � - (cond)

Example of typing derivation

� � � int � is in
�

� � � � exp � int � � ��� � exp � int �
� � � ��� � exp � bool � � ��� � � exp � int �

� � � int � is in
�

� � � � exp � int �
� � if � ��� then � � else � � exp � int �

compound phrases that consist of smaller sub-phrases. Since axioms can be considered as a special
case of inference rules, the latter are obviously the most important issue in the formal definition of
typing semantics. The general form of an inference rule is the following:

� � � 	 � � � � �� (rule)

where “rule” is an identifier specifying the rule’s unique name, � is a natural number and may be zero
and all other components are typing judgements. In particular, the typing judgements � � are the rule’s
premises whereas the typing judgement � is the rule’s conclusion. The intuitive meaning of this rule
is that, on condition that the premises are true , the conclusion is also true . In the case where no
premises are present (�
 �

), the inference rule represents an axiom.
As an example, a small number of typing rules for a hypothetical simple expression language

is given in the upper part of Figure 7.1. The rule “ide” is the only one that makes use of the type
assignment and its premise is given here in an informal way.

The proof of a typing judgement using a set of typing rules is called typing derivation. A typingTYPING

DERIVATIONS derivation typically combines a number of typing rules in a tree-like structure, in such a way that the
conclusion of one rule becomes a premise of some other rule. In this way, typing derivations may be
considered as complex inference rules. As mentioned previously, a typing judgement is true if and
only if it can be proved in the language’s semantics, i.e. if there exists a valid typing derivation. A
small example of a typing derivation for the same hypothetical expression language is shown in the
lower part of Figure 7.1.

A number of typing problems that play an important role in the semantics of programming lan-TYPING

PROBLEMS guages can be identified. Typing problems are families of questions that must be solved. Each par-
ticular question in such a family is called an instance of the problem and is generally related to the
validity of typing judgements. A proof of the solution must be given in terms of typing derivations. A

7.2. Typing judgements 95

typing problem is solvable if a proof of the solution can be given for every instance of this problem.
Of course, the typing semantics of a programming language is more useful if solvable typing problems
can be defined. For a more thorough discussion of typing and typing problems, the reader is referred
to [Mitc90, Mitc96].

It is possible to ask many different kinds of questions about a typing judgement. Probably the
most important typing problems in programming language semantics are the following, which are the
only ones studied in the rest of this thesis.2

� Decision problem: Given a typing judgement
� � � � � , determine whether it is true , i.e. if

there exists a valid typing derivation with this typing judgement as its conclusion. In case such
a derivation exists, an important question to be asked is whether this derivation is unique. This
issue is further discussed in Section 7.3.

� Type inference: Given a syntactically well-formed program phrase � and a type assignment
�

,
find a phrase type � such that the typing judgement

� � � � � is true . If such a type can be
inferred, an important issue is whether it is unique. The issue of uniqueness of the underlying
typing derivation is again important.

The type inference problem is “harder” than the decision problem, in the sense that the latter can be
reduced to the former. That is, if the type inference problem can be solved, then the decision problem
can also be solved.

7.2 Typing judgements

The typing semantics of C, as specified informally in - 6 of the standard, is largely complicated. Apart
from the main typing relation, an example of which was presented in the previous section, a number
of other forms of typing judgements are necessary un order to simplify the typing rules. A summary
of all forms of typing judgements that are used in C’s typing semantics is given in Table 7.1.

As was previously mentioned, in simple programming languages it is possible to define type as- TYPE

ASSIGNMENTSsignments at the same time with typing. However, in the case of real programming languages, such
as C, this cannot be done in an easy and elegant way. Instead, the various kinds of environments
that are produced from the static semantics are used as type assignments. Type environments contain
all necessary information about the name spaces of ordinary and tag identifiers and are used in most
typing judgements. Another kind of static environment that is used as a type assignment is member
environments, containing information about the members of structures or unions.

The main typing relation is expressed by typing judgements of the form: MAIN TYPING

RELATION

��� phrase � �

where � is a type environment, phrase is a syntactically well-formed program phrase and � is a phrase
type. As mentioned in the preliminary discussion, the intuitive meaning of such a judgement is that
the phrase is well typed and has type � , given the identifier declarations that are included in � .

96 Chapter 7. Typing judgements

Table 7.1: Summary of typing judgements.

Main typing relation
��� phrase � -

The given phrase can be attributed phrase type
-

in type environment � .

Predicates as judgements
�

Predicate
�

is true , where
�

can be any valid predicate over truth values ' .� ��� Elements � � � � are equal, w.r.t. domain equality in � .& � � 9 The static semantic valuation 9 � � ��� � produces the (non-error) value & � � .

Judgements related to environments
��� � � ,

Identifier
�

is associated with identifier type
,

in type environment � .� � � � �
Identifier

�
is associated with member type

�
in member environment � .

Judgements related to expressions
������� �

Expression � can be assigned to an object of data type
�

.����� � NULL Expression � is a null pointer constant.������� � Type name � denotes type � in type environment � .

Ordinary predicates can be used in the place of typing judgements. Predicates are meta-languagePREDICATES

expressions resulting in truth values, i.e. elements of domain � . A predicate whose value is true is
considered as a typing axiom, i.e. as a true typing judgement. On the other hand, a predicate whose
value is false , � or � , simply cannot be used in a typing derivation. Special cases of predicates used
as typing judgements are equality tests of the form �
 � , between elements � and � of domain 	 .

Another form of typing judgement, which is really a special notation for a simple predicate, isSTATIC

VALUATIONS used to allow the use of static valuations in typing rules. Static valuations often result in elements
of domain � ��	 � , where 	 is any domain and � is the error monad defined in Section 4.4. A typing
judgement of the form:

� �

where � � 	 and
 � � ��	 � , has the intuitive meaning that the static valuation
 results in a normal, i.e.
non-error, value � of the underlying domain 	 . This typing judgement is equivalent to the predicate:

 unit � �

but the special form is used for brevity.

The next two forms of typing judgements are strongly related to static environments and are usedENVIRONMENT

RELATED to extract typing information from them. The difference between the two lies in the kind of static
environment that contains the type information. In the case of typing judgement:

��� � � �

2 Other typing problems are type inhabitation, and context derivation. The first is about finding a program phrase which
inhabits a given phrase type under a given type assignment. The second is concerned with determining type assignments.

7.2. Typing judgements 97

the information is contained in type environment � and identifiers are associated with identifier types.
On the other hand, in the case of typing judgement:

� � ��� %

the information is contained in the member environment of a structure or union and identifiers are
associated with member types.

The last three forms of typing judgements are used in the typing semantics of expressions. A ASSIGNABIL-
ITYtyping judgement of the form:

��� ���

where � is a type environment, � is an expression phrase and is a data type, has the intuitive meaning
that the value of expression � can be assigned to an object of type , given the type environment � .

A special form of typing judgement is used to identify null pointer constants in expressions: NULL POINTER

CONSTANTS

��� �
 NULL

where � is a type environment and � is an expression phrase. The intuitive meaning of this typing
judgement is that � is a null pointer constant, given the type environment � .

The last form of typing judgement is used to simplify the association of type names with denotable TYPE NAMES

types. A judgement of the form:

��� � � �

where � is a type environment,
�

is a phrase generated by the non-terminal symbol type-name, and
� is a denotable type, has the intuitive meaning that

�
is a synonym for the type � , given the type

environment � .
Typing judgements may also appear in a negative sense. For the main type relation, a negative NEGATIVE

TYPING

JUDGEMENTS
judgement has the form:

��� � phrase � �

and the intuitive meaning is that the positive judgement � � phrase � � is not true , that is, there
does not exist a typing derivation with it as the conclusion. Negative judgements are only useful
when the related typing problems are solvable, since otherwise it cannot be determined whether such
a derivation exists.

98 Chapter 7. Typing judgements

Figure 7.2: Example of non-unique typing results and derivations.

Typing rules

��� � � val � int � (const)
����� � val � � ������ � exp � � � (coerce)

� � � � � val � int � ����� � � val � int ������ �)�� � � val � int � (plus-val)

����� � � exp � int � ����� � � exp � int �� ��� �) � � � exp � int � (plus-exp)

Two typing results for the phrase: �
�

����� � � val � int � (const)
� ��� � � val � int � (const)

����� � � exp � int � (coerce)

Two typing derivations for the judgement: ����� �),+ � exp � int �
� ��� � � val � int � (const) ��� + � val � int � (const)

����� �) + � val � int � (plus-val)

����� �) + � exp � int � (coerce)

����� � � val � int � (const)

����� � � exp � int � (coerce)
��� + � val � int � (const)

��� + � exp � int � (coerce)

����� �),+ � exp � int � (plus-exp)

7.3 Discussion of uniqueness in typing

The typing semantics of a real programming language, expressed in the form of inference rules, oftenINTRODUC-
TION AND

EXAMPLE
leads to ambiguity problems. There are two forms of such problems that appear in the study of
C’s typing semantics, as defined in the next chapters. Both problems are presented in this section
and briefly discussed. They are introduced in a small example that uses a very small subset of the
typing rules for C, slightly distorted for the sake of simplicity. The complete example is illustrated in
Figure 7.2. The upper part of the figure contains four typing rules:

� Rule const, stating that integer numbers are constant values of type int .

� Rule coerce, stating that a constant value can be coerced to a non-constant value, if the fact that
it is constant is not important. This rule is essential, in order to avoid duplicating all rules that
do not care for constant values.

� Rules plus-val and plus-exp are two similar rules for the typing semantics of the addition op-
erator. This operator distinguishes between constant and non-constant values. The sum of two
constant values is a constant value, in the sense that it can be computed at compile-time. On the
other hand, the sum of two non-constant values is a non-constant value and must be computed
at run-time. Notice how the presence of rule coerce makes it unnecessary to include all possible
combinations of constant and non-constant values.

7.3. Discussion of uniqueness in typing 99

The lower part of the same figure identifies two kinds of potential problems that are related to the
typing of expressions. The first has to do with the uniqueness of the typing results, and the second
with the uniqueness of typing derivations. Both issues are discussed in the following paragraphs. All
typing derivations in the figure are tagged with the names of the typing rules that are applied, for the
sake of clarity.

Consider the simple expression “42”, consisting of just an integer number. The middle section UNIQUENESS

OF RESULTSof Figure 7.2 shows two valid typing derivations that conclude in two different phrase types for this
phrase: val int � and exp int � . This proves that the typing results, as far as the main typing relation
for this example is concerned, are not unique. In fact, the phrase types that are associated with program
phrases need not be unique. In some cases, it is useful or even necessary to consider an integer
number as a constant integer value, e.g. in the case of C’s constant expressions, defined in - 6.4 of
the standard. In other cases, however, this information is not necessary and the more general type
of integer expression can be used. In conclusion, non-uniqueness of typing results does not pose a
problem, since different phrase types represent different aspects in the semantics of program phrases.

The lower section of Figure 7.2 shows two different valid derivations, both concluding with the UNIQUENESS

OF

DERIVATIONS
same typing result for the simple expression “42+1”. This expression is finally associated with phrase
type exp int � , that is, an integer expression. Both derivations start from the fact that the two operands
are constant integer values. The upper derivation first adds the two constant values and then coerces the
result to an integer expression. On the other hand, the lower derivation first coerces the two operands
and then adds the two resulting integer expressions.

Of course both derivations are valid and, since the typing result is the same, they both describe
the same semantic aspect of the given expression. However, as will be illustrated in Part IV, the
dynamic semantics for a well-typed program phrase largely depends on the typing derivation that is
used. Consequently, the issue of non-uniqueness of typing derivations does pose a problem for the
typing semantics of C. In order to overcome this problem, it must be guaranteed that the dynamic
semantics that correspond to all possible typing derivations for a program phrase are all equal. In the
example that was discussed above, the result of first adding and then coercing must be guaranteed to
be equal to the result of first coercing and then adding.

Chapter 8

Typing semantics of expressions

This chapter contains the typing rules for expressions, i.e. inference rules aiming primarily at asso- CHAPTER

OVERVIEWciating expressions with phrase types by means of formal typing derivations. Section 8.1 defines the
main typing relation, corresponding to typing judgements of the form � � � ��� . Its structure cor-
responds to the structure of - 6.3 of the standard, with small deviations. In Section 8.2 typing rules
corresponding to other forms of typing judgements are defined.

8.1 Main typing relation

The main typing relation for expressions corresponds to typing judgements of the form: INTUITIVE

MEANING

��� � � �

where � is an expression, � is the type environment for the scope which contains the expression, and
� is a type that is attributed to � . The intended meaning of typing derivations for the aforementioned
typing judgement is double. First, if a typing derivation can be found having this judgement as its
conclusion, then � is a well typed expression of type � , i.e. it complies to the typing rules according to
the standard and has the appropriate type. Second, it must not be possible to produce typing derivations
for not well typed expressions, i.e. incorrect expressions containing one or more violations of the
typing rules stated in the standard. Valid values for � are:

val � Attributed to constant expressions which can only be treated as r-values. Con-
stant expressions need not access the program state, i.e. the values of stored
objects, in order to be evaluated.

exp � � Attributed to non-constant expressions which can only be treated as r-values.
Evaluation of non-constant expressions generally requires access to the pro-
gram state.

lvalue % � Attributed to non-constant expressions that designate objects and can be
treated as l-values.

As has been discussed in Section 7.3, the types that can be attributed to expressions are not unique. UNIQUENESS

ISSUESThis is primarily the effect of the implicit coercion rules that are defined in Section 8.1.15. Further-
more, for a given typing judgement it may be possible to produce different typing derivations. This is
a result of the distiction between constant and non-constant expressions, that is introduced in - 6.4 of
the standard. In all arithmetic operations the typing rules must distinguish between constant and non-
constant values, i.e. expressions of types val � and exp � , as was illustrated in the example given

102 Chapter 8. Typing semantics of expressions

in Section 7.3. As has already been mentioned, the dynamic semantics that correspond to different
possible derivations must be equal.

8.1.1 Primary expressions

The typing semantics of primary expressions is described in - 6.3.1 of the standard. As the reader
would expect, types of the form val � are attributed to all kinds of constants, whereas string literals
and identifiers designating objects have types of the form lvalue % � .

suffix � � � ���
��� � � val � double � (E1)FLOATING

CONSTANTS

suffix � � � � � ‘F’
�

��� � � val � float � (E2)

suffix � � � � � ‘L’
�

��� � � val � long-double � (E3)

The type of a floating constant is determined by its suffix, as stated in - 6.1.3.1 of the standard. Absence
of a suffix makes it a double constant.

suffix � �	� ��� isDecimal � � �� � � firstToRepresent � � � int long-int unsigned-long-int � ���� � � val � � � (E4)INTEGER

CONSTANTS

suffix � � � ��� �
isDecimal � �	�� � � firstToRepresent � � � int unsigned-int long-int unsigned-long-int � ���� � � val � � � (E5)

suffix � �	� � � ‘U’
� � � � firstToRepresent � � � unsigned-int unsigned-long-int � ���� � � val � � � (E6)

suffix � �	� � � ‘L’
� � � � firstToRepresent � � � long-int unsigned-long-int � ���� � � val � � � (E7)

suffix � �	� � � ‘U’ ‘L’
� � � � firstToRepresent � � � unsigned-long-int � ���� � � val � � � (E8)

The types of integer constants are somewhat more complicated, as stated in - 6.1.3.2 of the standard.
They are determined not only by the suffix, but also by the base of the system in which the constant is
expressed.

prefix � 	 � ���
��� 	 � val � int � (E9)CHARACTER

CONSTANTS

prefix � 	 � � � ‘L’
�

��� 	 � val � wchar t � (E10)

Character constants, as stated in - 6.1.3.4 of the standard, are distinguished in normal and wide.

prefix � � � ��� � � lengthOf � � �) +
��� � � lvalue � array � obj � char noqual � �� ��� (E11)STRING

LITERALS

8.1. Main typing relation 103

prefix � � � � � ‘L’
� � � lengthOf � � �),+

� � � � lvalue � array � obj � wchar t noqual � �� ��� (E12)

String literals are also distinguished in normal and wide, as stated in - 6.1.4 of the standard. They are
l-values of appropriate array types.

� � � � normal � � ���� � � lvalue � � � (E13) IDENTIFIERS

� � � � normal � � ���� � � exp � � � (E14)

� � � � enum-const � � �� � � � val � int � (E15)

Identifiers that are present in the environment are attributed the types that the environment associates
with them. Object designators are l-values, function designators are r-values and enumeration con-
stants are constant values of type int.

8.1.2 Postfix operators

The typing semantics of postfix expressions is described in - 6.3.2 of the standard. Postfix increment
and decrement operators are defined in Section 8.1.3.

� � *(�
�
+ �

�
) � lvalue � � ������ � [� �] � lvalue � � � (E16) ARRAY

SUBSCRIPTS

As specified in - 6.3.2.1 of the standard, the connection between arrays and pointers is obvious in the
definition of the array subscripting operator. Its type relies on the correct typing for indirection and
the addition operator.

� ��� � exp � ptr � func � � �� ����� ��� arguments � arg � � ������ (arguments) � exp � � � (E17) FUNCTION

CALLS

The typing rule for function calls is straightforward. The types of actual arguments must match the
types of formal arguments, in the function prototype. The following rules define the typing semantics
for arguments.

� � � � arg � � � � (R1)

� � � ellipsis � �
� � � � arg � � � (R2)

� ����� � ��� arguments � arg � ��� � ! � � � � ������ , arguments � arg � � ! � (R3)

� ��� � exp � � � ��� arguments � arg � � � � � � ellipsis � � � ! � � argPromote
�

����� , arguments � arg � � � (R4)

A function’s arguments are distinguished in two categories: those passed as parameters that are specif-
ically declared in the function’s prototype and those passed in the ellipsis part. Rules R1 and R3 treat
arguments that correspond to the first category, whereas rules R2 and R4 treat arguments correspond-
ing to the second category. In the first category, arguments are converted as if by assignment to the
appropriate parameter type. In the second category, the default argument promotions are applied.

104 Chapter 8. Typing semantics of expressions

����� � lvalue � obj � struct � � �� � $ ��� � � � � � � ! � � qualify
$ �

����� . � � lvalue � � ! � (E18)MEMBER

OPERATORS

����� � exp � struct � � �� ��� � � � � � � � � datify
�

����� . � � exp � � � (E19)

����� � lvalue � obj � union � � �� � $ ��� � � � � � � ! � � qualify
$ �

����� . � � lvalue � � ! � (E20)

����� � exp � union � � �� ��� � � � � � � � � datify
�

����� . � � exp � � � (E21)

The typing rules for the dot operator depend on two independent factors. The first is whether the left
operand is a structure or a union; this factor does not affect the type of the whole expression. The
second is whether the left operand is an l-value. If it is, the result of the expression is also an l-value,
otherwise it is not. Thus, four typing rules for the dot operator are necessary.

����� � exp � ptr � obj � struct � � �� � $ ����� � � � � � � ! � � qualify
$ �

����� -> � � lvalue � � ! � (E22)

����� � exp � ptr � obj � union � � �� � $ ����� � � � � � � ! � � qualify
$ �

����� -> � � lvalue � � ! � (E23)

In the case of the arrow operator, on the other hand, the result is always an l-value. There is only a
distinction between structures and unions.

8.1.3 Unary operators

The typing semantics of unary operators is described in - 6.3.3 of the standard.

����� � lvalue � � � isScalar � � � isModifiable � � � � � � datify
�

����� ++ � exp � � � (E24)POSTFIX

INCREMENT

����� � lvalue � � � isScalar � � � isModifiable � � � � � � datify
�

����� -- � exp � � � (E25)POSTFIX

DECREMENT

����� � lvalue � � � isScalar � � � isModifiable � � � � � � datify
�

��� ++ � � exp � � � (E26)PREFIX

INCREMENT

����� � lvalue � � � isScalar � � � isModifiable � � � � � � datify
�

��� -- � � exp � � � (E27)PREFIX

DECREMENT

Increment and decrement operators can be applied to modifiable l-values of scalar type. The result is
not an l-value.

����� � lvalue � � ���� & � � exp � ptr � � ��� (E28)ADDRESS

OPERATOR

����� � exp � � ���� & � � exp � ptr � � ��� (E29)

The address of an object or function designator is attributed an appropriate pointer type. Notice that
an object designator has type lvalue � � , i.e. bit-fields are not allowed, and that a function designator
has type exp � � .

8.1. Main typing relation 105

� ��� � exp � ptr � � ������ * � � lvalue � � � (E30) INDIRECTION

OPERATOR

� ��� � exp � ptr � � ������ * � � exp � � � (E31)

The indirection operator is the inverse of the address operator. Pointers to objects and functions are
taken back to object and function designators respectively.

� ��� � val � � � isArithmetic � � � � ! � � intPromote
�

� � + � � val � � ! � (E32) UNARY PLUS

� ��� � exp � � � isArithmetic � � � � ! � � intPromote
�

� � + � � exp � � ! � (E33)

� ��� � val � � � isArithmetic � � � � ! � � intPromote
�

� � - � � val � � ! � (E34) UNARY MINUS

� ��� � exp � � � isArithmetic � � � � ! � � intPromote
�

� � - � � exp � � ! � (E35)

Unary sign operators take an arithmetic operand and apply the integral promotions. They distinguish
between constant and non-constant operands.

� ��� � val � � � isIntegral � � � � ! � � intPromote
�

��� � � � val � � ! � (E36) BITWISE

NEGATION

� ��� � exp � � � isIntegral � � � � ! � � intPromote
�

��� � � � exp � � ! � (E37)

The bitwise negation operator takes an integral operand and apply the integral promotions. It distin-
guishes between constant and non-constant operands.

� ��� == � � -
��� ! � � - (E38) LOGICAL

NEGATION

The logical negation operator is defined in terms of the equality operator; a zero value is taken to be
the false truth value in C.

� ��� � lvalue � � � �
isBitfield � � ���� sizeof � � val � size t � (E39) SIZEOF

OPERATOR

����� � exp � � �� � sizeof � � � (E40)

� ��� � exp � � � isComplete � � ���� sizeof � � val � size t � (E41)

������� �
isComplete � � �� � sizeof(�) � val � size t � (E42)

The sizeof operator comes in two flavours. The first flavour takes an expression as its operand. The
expression must not be a function designator. It must also be of a complete, non bit-field type. Three
typing rules are needed to define these requirements; rule E40 is needed to invalidate function des-
ignators because of their implicit coercion C4 to function pointers. The second flavour of the sizeof
operator takes a type name as its operand. Again, the type that is denoted by the name must be
complete.

106 Chapter 8. Typing semantics of expressions

8.1.4 Cast operators

The typing semantics of cast operators is described in - 6.3.4 of the standard.

����� � exp � & � ����� � obj � void $ ���� (�) � � exp � void � (E43)

Expressions of any type can be cast to a qualified or unqualified version of the type void.

����� � val � � � isScalar � � � ����� � � ! isScalar � � ! � � ! � � datify
� !��� (�) � � val � � ! � (E44)

����� � exp � � � isScalar � � � ������� � ! isScalar � � ! � � ! � � datify
� !��� (�) � � exp � � ! � (E45)

Otherwise, the type of the operand and the specified target type � must be both scalar. A distinction
is made between constant and non-constant operands.

8.1.5 Multiplicative operators

The typing semantics of multiplicative operators is described in - 6.3.5 of the standard.

� ��� � � val � ��� � � ��� � � val � ��� �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #����� � * � � � val � � ! � (E46)MULTIPLICA-
TION

� ��� � � exp � ��� � � � � � � exp � ��� �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #����� � * � � � exp � � ! � (E47)

� ��� � � val � ��� � � ��� � � val � ��� �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #����� � / � � � val � � ! � (E48)DIVISION

� ��� � � exp � ��� � � � � � � exp � ��� �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #����� � / � � � exp � � ! � (E49)

The multiplication and division operators are very similar. They take two arithmetic operands and
apply the usual arithmetic conversions. They distinguish between constant and non-constant values.

����� � � val � � � � ����� � � val � � � �
isIntegral � � � � isIntegral � � � � � ! � � arithConv

� � � � � #����� � % � � � val � � ! � (E50)MODULO

OPERATOR

����� � � exp � � � � ����� � � exp � � � �
isIntegral � ��� � isIntegral � ��� � � ! � � arithConv

� ��� ��� #����� � % � � � exp � � ! � (E51)

The modulo operator is similar to the multiplication and division operators, with the exception that its
operands must be integral.

8.1. Main typing relation 107

8.1.6 Additive operators

The typing semantics of additive operators is described in - 6.3.6 of the standard.

����� � � val � ��� � ����� � � val � ��� �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #����� � + � � � val � � ! � (E52) ADDITION

����� � � exp � ��� � ����� � � exp � ��� �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #� ��� � + � � � exp � � ! � (E53)

� ��� � � exp � ptr � � � ��� ����� � � exp � ��� � isComplete � � � � isIntegral � ��� ������ � + � � � exp � ptr � � � ��� (E54)

� ��� � � exp � � � � ����� � � exp � ptr � � � ��� isIntegral � � � � isComplete � � � ������ � + � � � exp � ptr � � � ��� (E55)

When two arithmetic operands are added, the usual arithmetic conversions are applied and a distinction
is made between constant and non-constant values. The last two rules are symmetric, with respect to
the order of the two operands and define the typing of pointer arithmetic. The one operand must be a
pointer to a complete object type, whereas the second must be of an integral type.

����� � � val � � � � ����� � � val � � � �
isArithmetic � � � � isArithmetic � ��� � � ! � � arithConv

� ��� ��� #����� � - � � � val � � ! � (E56) SUBTRACTION

����� � � exp � � � � ����� � � exp � � � �
isArithmetic � � � � isArithmetic � ��� � � ! � � arithConv

� ��� ��� #� ��� � - � � � exp � � ! � (E57)

� ��� � � exp � ptr � � � ��� ����� � � exp � � � � isComplete � � � � isIntegral � � � ������ � - � � � exp � ptr � � � ��� (E58)

����� � � exp � ptr � � � ��� ����� � � exp � ptr � � � ���
isComplete � � � � isComplete � � � � isCompatibleQual � � � � � ������ � - � � � exp � ptrdiff t � (E59)

The typing rules for subtraction are similar to the ones for addition. The difference lies on the last
rule. Pointer subtraction is not symmetric with respect to the order of the two operands. Operands
of integral types may be subtracted from pointers to complete types, but not vice versa. However, as
specified by the last rule, two pointers to complete types may be subtracted, on condition that the types
are compatible ignoring qualifiers. The result is of type ptrdiff t .

8.1.7 Bitwise shift operators

The typing semantics of bitwise shift operators is described in - 6.3.7 of the standard.

����� � � val � ��� � ����� � � val � ��� �
isArithmetic � � � � isArithmetic � � � � � !� � � intPromote

� � � !� � � intPromote
� �

����� � << � � � val � � !� � (E60) LEFT SHIFT

108 Chapter 8. Typing semantics of expressions

� � � � � exp � � � � � ��� � � exp � � � �
isArithmetic � � � � isArithmetic � ��� � � !� � � intPromote

� � � !� � � intPromote
���

����� � << � � � exp � � !� � (E61)

� ��� � � val � � � � � ��� � � val � � � �
isArithmetic � � � � isArithmetic � ��� � � !� � � intPromote

� � � !� � � intPromote
���

����� � >> � � � val � � !� � (E62)RIGHT SHIFT

� � � � � exp � � � � � ��� � � exp � � � �
isArithmetic � � � � isArithmetic � ��� � � !� � � intPromote

� � � !� � � intPromote
���

����� � >> � � � exp � � !� � (E63)

Typing rules for left and right bitwise shift operators are very similar. They take arithmetic operands
and apply the integral promotions to both operands. They distinguish between constant and non-
constant values.

8.1.8 Relational operators

The typing semantics of relational operators is described in - 6.3.8 of the standard.

� ��� � � val � � � � � ��� � � val � � � �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #����� � < � � � val � int � (E64)LESS THAN

� ��� � � exp � � � � � � � � � exp � � � �
isArithmetic � � � � isArithmetic � ��� � � ! � � arithConv

� ��� ��� #����� � < � � � exp � int � (E65)

����� � � exp � ptr � � � ��� ����� � � exp � ptr � � � ��� isCompatibleQual � � � � � ������ � < � � � exp � int � (E66)

� ��� � � val � � � � � ��� � � val � � � �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #����� � > � � � val � int � (E67)GREATER

THAN

� ��� � � exp � ��� � � � � � � exp � ��� �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #����� � > � � � exp � int � (E68)

����� � � exp � ptr � � � ��� ����� � � exp � ptr � � � ��� isCompatibleQual � � � � � ������ � > � � � exp � int � (E69)

� ��� � � val � � � � � ��� � � val � � � �
isArithmetic � � � � isArithmetic � ��� � � ! � � arithConv

� ��� ��� #� ��� � <= � � � val � int � (E70)LESS OR

EQUAL

� ��� � � exp � � � � � � � � � exp � � � �
isArithmetic � � � � isArithmetic � ��� � � ! � � arithConv

� ��� ��� #����� � <= � � � exp � int � (E71)

����� � � exp � ptr � � � ��� ����� � � exp � ptr � � � ��� isCompatibleQual � � � � � ������ � <= � � � exp � int � (E72)

� ��� � � val � � � � � ��� � � val � � � �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #� ��� � >= � � � val � int � (E73)GREATER OR

EQUAL

8.1. Main typing relation 109

����� � � exp � � � � ����� � � exp � � � �
isArithmetic � � � � isArithmetic � ��� � � ! � � arithConv

� ��� ��� #����� � >= � � � exp � int � (E74)

� ��� � � exp � ptr � � � ��� ����� � � exp � ptr � � � ��� isCompatibleQual � � � � � ������ � >= � � � exp � int � (E75)

Typing rules for all relational operators are very similar. The operands may either be arithmetic or
pointers to object types, which must be compatible ignoring qualifiers.

8.1.9 Equality operators

The typing semantics of equality operators is described in - 6.3.9 of the standard.

����� � � val � � � � ����� � � val � � � �
isArithmetic � � � � isArithmetic � ��� � � ! � � arithConv

� ��� ��� #����� � == � � � val � int � (E76) EQUALITY

����� � � exp � ��� � ����� � � exp � ��� �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #����� � == � � � exp � int � (E77)

If the operands are of arithmetic type, the equality operator simply dinstiguishes between constant and
non-constant values.

� ��� � � exp � ptr � � � ��� ����� � � exp � ptr � � � ��� isCompatibleQual � � � �� � ������ � == � � � exp � int � (E78)

Pointers to object or function types may be compared for equality. The pointed types must be compat-
ible ignoring qualifiers.

� ��� � � exp � ptr � � � ��� ����� � � exp � ptr � obj � void $ ���������� � == � � � exp � int � (E79)

� ��� � � exp � ptr � obj � void $ ����� ����� � � exp � ptr � � � �������� � == � � � exp � int � (E80)

A pointer to any object type may be compared for equality to a pointer to a qualified or unqualified
version of void.

� ��� � � exp � ptr � � � ��� ����� � � NULL����� � == � � � exp � int � (E81)

� ��� � � NULL ����� � � exp � ptr � � � �������� � == � � � exp � int � (E82)

A pointer to any object or function type may be compared for equality to a null pointer constant.

����� � � val � � � � ����� � � val � � � �
isArithmetic � � � � isArithmetic � ��� � � ! � � arithConv

� ��� ��� #����� � != � � � val � int � (E83) INEQUALITY

����� � � exp � ��� � ����� � � exp � ��� �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � #����� � != � � � exp � int � (E84)

110 Chapter 8. Typing semantics of expressions

����� � � exp � ptr � � � ��� ����� � � exp � ptr � � � ��� isCompatibleQual � � � �� � ������ � != � � � exp � int � (E85)

����� � � exp � ptr � � � ��� ����� � � exp � ptr � obj � void $ ���������� � != � � � exp � int � (E86)

����� � � exp � ptr � obj � void $ ����� � ��� � � exp � ptr � � � �������� � != � � � exp � int � (E87)

����� � � exp � ptr � � � ��� ����� � � NULL� ��� � != � � � exp � int � (E88)

����� � � NULL ����� � � exp � ptr � � � ���� ��� � != � � � exp � int � (E89)

Typing rules for the inequality operator are very similar to those for the equality operator.

8.1.10 Bitwise logical operators

The typing semantics of bitwise logical operators is described in - - 6.3.10, 6.3.11 and 6.3.12 of the
standard.

����� � � val � � � � ����� � � val � � � �
isIntegral � � � � isIntegral � � � � � ! � � arithConv

� � � � � #����� � & � � � val � � ! � (E90)BITWISE

CONJUNCTION

����� � � exp � ��� � ����� � � exp � ��� �
isIntegral � � � � isIntegral � � � � � ! � � arithConv

� � � � � #����� � & � � � exp � � ! � (E91)

����� � � val � ��� � ����� � � val � ��� �
isIntegral � � � � isIntegral � � � � � ! � � arithConv

� � � � � #����� � | � � � val � � ! � (E92)BITWISE

DISJUNCTION

����� � � exp � � � � ����� � � exp � � � �
isIntegral � ��� � isIntegral � ��� � � ! � � arithConv

� ��� ��� #����� � | � � � exp � � ! � (E93)

����� � � val � � � � ����� � � val � � � �
isIntegral � ��� � isIntegral � ��� � � ! � � arithConv

� ��� ��� #����� � ˆ � � � val � � ! � (E94)BITWISE

EXCLUSIVE

DISJUNCTION ����� � � exp � ��� � ����� � � exp � ��� �
isIntegral � � � � isIntegral � � � � � ! � � arithConv

� � � � � #����� � ˆ � � � exp � � ! � (E95)

The typing rules for bitwise logical operators are very similar. Both operands must be of integral types
and the usual arithmetic conversions are applied. A distinction between constant and non-constant
values is made.

8.1.11 Logical operators

The typing semantics of logical operators is described in - - 6.3.13 and 6.3.14 of the standard. The
typing rules are somewhat perplexed by the short-circuit semantics of the two operators. All operands
must be of scalar type.

8.1. Main typing relation 111

� ��� � � val � � � � � ��� � � val � � � � isScalar � � � � isScalar � � � �� ��� � && � � � val � int � (E96) LOGICAL

CONJUNCTION

If both operands to the logical conjunction operator are constant values, the result is also a constant
value.

����� � � val � � � � ����� � � exp � � � �
isScalar � � � � isScalar � � � � �

checkBoolean ��� � � � � � � � � ������ � && � � � val � int � (E97)

If the left operand is a constant value that evaluates to zero, the result is a constant value. It will also be
zero, as is specified by the dynamic semantics for the logical conjunction operator. This rule reflects
the short-circuit semantics.

� ��� � � exp � � � � ����� � � exp � ��� � isScalar � ��� � isScalar � ��� ������ � && � � � exp � int � (E98)

Finally, if both operands are non-constant values, the result is also a non-constant value.

� ��� � � val � � � � � ��� � � val � � � � isScalar � � � � isScalar � � � �� ��� � || � � � val � int � (E99) LOGICAL

DISJUNCTION

����� � � val � � � � ����� � � exp � � � �
isScalar � ��� � isScalar � ��� � checkBoolean ��� � � � � � � � � �� ��� � || � � � val � int � (E100)

� ��� � � exp � � � � ����� � � exp � � � � isScalar � � � � isScalar � � � ������ � || � � � exp � int � (E101)

The typing rules for the logical disjunction operator are similar to the ones for the logical conjunction.
The only difference is in the short-circuit semantics: the result value is known to be a constant if the
value of the left operand is constant and non-zero.

8.1.12 Conditional operator

The typing semantics of the conditional operator is described in - 6.3.15 of the standard. The typing
rules are again somewhat perplexed by the short-circuit semantics, in the case of arithmetic operands.
The first operand must always be of scalar type.

����� � val � � � isScalar � � � ����� � � val � � � � ����� � � exp � � � �
isArithmetic � � � � isArithmetic � � � � � ! � � arithConv

� � � � � # checkBoolean � � � � � � � � ������ ? � � : � � � val � � ! � (E102)

����� � val � � � isScalar � � � ����� � � exp � � � � ����� � � val � � � �
isArithmetic � � � � isArithmetic � ��� � � ! � � arithConv

� ��� ��� # �
checkBoolean � � � � � � � � ������ ? � � : � � � val � � ! � (E103)

� ��� � exp � � � isScalar � � � ����� � � exp � � � � ����� � � exp � � � �
isArithmetic � ��� � isArithmetic � ��� � � ! � � arithConv

� ��� ��� #����� ? � � : � � � exp � � ! � (E104)

When the second and third operands are arithmetic, the usual arithmetic conversions are applied. The
result may only be a constant value in two cases: (i) if the first operand is a constant zero value and
the third operand is also constant, as specified by the first rule; or (ii) if the first operand is a constant
non-zero value and the second operand is also constant, as specified by the second rule. The third rule
covers all other cases.

112 Chapter 8. Typing semantics of expressions

����� � exp � � � isScalar � � � ����� � � exp � struct � � �� ��� ����� � � exp � struct � � �� �������� ? � � : � � � exp � struct � � �� ��� (E105)

����� � exp � � � isScalar � � � ����� � � exp � union � � �� ��� ����� � � exp � union � � �� �������� ? � � : � � � exp � union � � �� ��� (E106)

����� � exp � � � isScalar � � � ����� � � exp � void � ����� � � exp � void ������ ? � � : � � � exp � void � (E107)

If the second and third operands are of the same structure or union type1 or of type void, the result is
of the same type.

����� � exp � � � isScalar � � � ����� � � exp � ptr � � � ��� ����� � � exp � ptr � � � ���
isCompatibleQual � � � �� � � � ! � � compositeQual

� � � �� � #����� ? � � : � � � exp � ptr � � ! ��� (E108)

The second and third operands may be pointers to compatible object or function types, ignoring qual-
ifiers. In this case, the result has the composite type.

����� � exp � � � isScalar � � � ����� � � exp � ptr � � � ��� ����� � � NULL����� ? � � : � � � exp � ptr � � � ��� (E109)

����� � exp � � � isScalar � � � ����� � � NULL ����� � � exp � ptr � � � �������� ? � � : � � � exp � ptr � � � ��� (E110)

The second operand may be a null pointer constant; in this case the third operand may be a pointer to
an object or function type and the result is of the same type. The same applies symmetrically.

����� � exp � � � isScalar � � � ����� � � exp � ptr � � � ��� � � � � � exp � ptr � obj � void $ � �����$ � � getQualifier
� � � ���� � � NULL����� ? � � : � � � exp � ptr � obj � void $ � � $ � ����� (E111)

����� � exp � � � isScalar � � � ����� � � exp � ptr � obj � void $ � ����� ����� � � exp � ptr � � � ���� ���� � � NULL
$ � � getQualifier

� �
����� ? � � : � � � exp � ptr � obj � void $ � � $ � ����� (E112)

Finally, the second operand may be a pointer to a qualified or unqualified version of void; in this case
the third operand may be a pointer to an object type and the result is a pointer to void, qualified with
all the qualifiers of the two operands. The same applies symmetrically. The void pointer operand must
not be a null pointer constant, in order to disambiguate these two rules from the previous two.

8.1.13 Assignment operators

The typing semantics of assignment operators is described in - 6.3.16 of the standard.

����� � � lvalue � � � isModifiable � � � � � � datify
� ����� � � �

����� � = � � � exp � � � (E113)SIMPLE

ASSIGNMENT

The left operand in a simple assignment must be a modifiable l-value and the right operand must be
assignable to the type of the left operand.

8.1. Main typing relation 113

� ��� � = � � op �
� � exp � � ������ � op= �

� � exp � � � (E114) COMPOSITE

ASSIGNMENT

The typing of composite assignments is defined in terms of the typing of simple assignments. The
typing rules for the corresponding binary operators guarantee that the operands have arithmetic types,
appropriate for each operator.

8.1.14 Comma operator

The typing semantics of the comma operator is described in - 6.3.17 of the standard.

� ��� � � exp � � � � ����� � � exp � � � �� ��� � , � � � exp � � � � (E115)

The type of left operand does not affect the type of the result. However, both operands must be
expressions and the result is not an l-value, a function designator or a constant expression. The last is
specified in - 6.4 of the standard.

8.1.15 Implicit coercions

A number of implicit coercions are specified in - 6.2 of the standard. These coercions are expressed by
means of inference rules, which attribute “additional” types for expressions, e.g. in the presence of the
declaration “int x;”, expression “x” can have type lvalue obj int � noqual ��� but also exp int � ,
as specified by inference rule C1. The first would be used if “x” was the left operand of an assignment,
whereas the second would would be used in most other places.

� ��� � lvalue � obj � � $ ��� isComplete � � �� ��� � exp � � � (C1)

As specified in - 6.2.2.1 of the standard, an l-value that does not have array type is converted to the
value stored in the designated object, except when an l-value is explicitly required by the typing
semantics of a particular operator. The assumption that objects types are complete is implicit in the
standard.

� ��� � lvalue � array � � �� �������� � exp � ptr � � ��� (C2)

Similarly, l-values of array types are converted to pointers to array elements, as specified again in
- 6.2.2.1 of the standard.

� ��� � lvalue � bitfield � $ �� ��� � � datify ����� � exp � � � (C3)

This implicit coercion is specified in - 6.2.1.1 of the standard. According to it, bit-fields may be used
in expressions whenever the corresponding integer types may be used.

����� � exp � � �� ��� � exp � ptr � � ��� (C4)

In - 6.2.2.1 of the standard it is specified that function designators are converted to pointers to func-
tions.2

114 Chapter 8. Typing semantics of expressions

����� � val � � ������ � exp � � � (C5)

Finally, an implicit coercion that is not specified in the standard but is a necessary one for the proposed
type systems. Expressions with constant values can be considered as expressions with non-constant
values. Thus, expression “1” can be attributed type val int � , but also exp int � .

8.2 Auxiliary rules

A number of auxiliary rules is used to define the typing semantics of auxiliary typing judgements,
which are used in order to simplify the main typing rules. Most of these rules are very simply defined
in terms of predicates, static domain functions or other typing judgements.

8.2.1 Typing from declarations
, � � � � � ide �� � � � , (T1)

An identifier � declared in an environment � is simply attributed the identifier type
�

that � associates
with it.

� � � � � � �
� � � � � (T2)

The case of identifiers declared in member environments is similar. They are attributed the member
types associated with them by the member environments.

8.2.2 Type names

� � � ��� � �� �
������� � (T3)

The type that is denoted by a type name
�

in a type environment � is simply the denotable type that
results from applying the static meaning of

�
to � .

8.2.3 Assignment rules

This set of rules defines when expression � is “assignable” to a data type . The definition is taken
from - 6.3.16.1 of the standard. One should keep in mind that � is the right operand in a simple
assignment, whereas is the data type of an object that will store the value of � . Whether the left
operand of the assignment is indeed a modifiable l-value is not the issue at this point.

����� � exp � � � isArithmetic � � � isArithmetic � � ! �� ����� � ! (A1)

An expression of arithmentic type can be assigned to an object of any arithmetic type � .

8.2. Auxiliary rules 115

� ��� � exp � � � isComplete � � �������� � (A2)

An expression of type can be assigned to an object of the same type, provided that it is a complete
type.

����� � exp � ptr � � ��� isCompatibleQual � � �� ! �$ � getQualifier � $! � getQualifier � ! $ � $!������� ptr � � ! � (A3)

A pointer to a type � can be assigned to an object of type pointer to � � on condition that � and � � are
compatible, ignoring qualifiers, and that all qualifiers in � are present in � � .

� ��� � exp � ptr � � ��� $ � getQualifier
� $ � $!������� ptr � obj � void $! ��� (A4)

� ��� � exp � ptr � obj � void $ ����� $! � getQualifier
� ! $ � $!������� ptr � � ! � (A5)

A pointer to a type � can be assigned to an object of type pointer to (possibly qualified) void, and vice
versa. The condition again that must be satisfied is that the type pointed by the left operand of the
assignment should include all qualifiers of the type pointed by the right operand.

����� � NULL� ����� ptr � � ! � (A6)

A null pointer constant can be assigned to any pointer type.

8.2.4 Null pointer constants
� ��� � val � � � isIntegral � � � �

checkBoolean � � � � � � � � ������ � NULL
(N1)

� ��� � val � � � isIntegral � � � �
checkBoolean � � � � � � � � � ������� obj � void noqual ���� (�) � � NULL

(N2)

As specified in - 6.2.2.3 of the standard, an integral constant expression that evaluates to zero, or such
an expression cast to type “void *”, is a null pointer constant.

1 See deviation D-11 in Section 2.3.
2 The only exception here is the sizeof operator, whose typing semantics in rule E40 prevents this implicit coercion.

Chapter 9

Typing semantics of declarations

This chapter contains the typing rules for declarations, i.e. inference rules aiming primarily at associ- CHAPTER

OVERVIEWating declarations and related phrases with phrase types by means of formal typing derivations. The
typing rules for external declarations are defined in Section 9.1, whereas those for other declarations
are defined in Section 9.2.

9.1 External declarations

The typing semantics of external declarations is specified in - 6.7 of the standard. Its definition is
straightforward.

� � external-declaration-list � xdecl��� external-declaration-list � tunit
(X1) TRANSLATION

UNITS

Any valid list of external declarations forms a translation unit.

� � external-declaration � xdecl � � external-declaration-list � xdecl��� external-declaration external-declaration-list � xdecl
(X2) EXTERNAL

DECLARATION

LISTS
This typing rule allows forming sequences of external declarations, provided that the parts themselves
are valid external declarations.

� � declaration � decl� � declaration � xdecl
(X3) EXTERNAL

DECLARA-
TIONS

Any valid declaration also forms an external declaration.

� � declarator � dtor � func � � $� ��� � ! � � rec ��� ��� declarator �� * ��� declaration-list �� � � � � �� ! � declaration-list � decl � ! � statement-list � stmt � � ���� declaration-specifiers declarator � declaration-list statement-list
� � xdecl

(X4)

This typing rule reflects the typing semantics of function definitions, as specified in - 6.7.1 of the
standard, and is probably the most complicated one in the typing semantics of declarations. The first
condition is that the declarator must indeed be a function declarator. Then, the type environment for
the function’s body is constructed and fixed, by first adding the formal parameters and then adding all
declarations from the function’s declaration list. In addition, the declaration and statement lists must
be valid and the returned type from the statement list must indeed be the one specified in the function’s
declarator.

118 Chapter 9. Typing semantics of declarations

9.2 Declarations

The typing semantics of declarations are specified in - 6.5 of the standard. It should be mentioned that
not all non-terminal symbols from the abstract syntax grammar of C need be attributed types. In some
cases, all the necessary information is already present in the type environment, e.g. in rules D8 and D9
about the typing of declarators, and can be extracted from there. The typing rules are trivial in many
cases.

��� � � decl
(D1)DECLARATION

LISTS

��� declaration � decl ��� declaration-list � decl��� declaration declaration-list � decl
(D2)

Declaration lists may be empty or may consist of one or more declarations.

��� init-declarator-list � idtor��� declaration-specifiers init-declarator-list ; � decl
(D3)DECLARA-

TIONS

The typing rule for declarations only requires that the initializer declarator list is valid.

9.2.1 Declarators

��� � � idtor
(D4)DECLARATOR

LISTS WITH

INITIALIZERS ��� init-declarator � idtor ��� init-declarator-list � idtor��� init-declarator init-declarator-list � idtor
(D5)

A list of declarators with initializers may be either empty or may consist of several declarators with
initializers.

��� declarator � dtor � � ���� declarator � idtor
(D6)DECLARATORS

WITH

INITIALIZERS ��� declarator � dtor � � � ��� initializer � init � � ���� declarator = initializer � idtor
(D7)

Declarators may or may not have initializers. If no initializer is present, any denotable type may be
specified by the declarator. If an initializer is present, the type specified by the declarator must be an
object type and the initializer must be valid for this object type.

��� � � normal � � �� � � � dtor � � � (D8)SIMPLE

DECLARATORS

��� � � typedef � � ���� � � dtor � � � (D9)

Simple declarators correspond to ordinary identifiers that may be object designators or type synonyms.
The corresponding denotable types are extracted from the type environment.

��� declarator � dtor � � � ��� constant-expression � val � � � isIntegral � � ���� declarator [constant-expression] � dtor � � � (D10)ARRAY

DECLARATORS

9.2. Declarations 119

��� declarator � dtor � � �� � declarator [] � dtor � � � (D11)

In the case of array declarators, the necessary type information is extracted from the type environment.

��� declarator � dtor � � �� � * type-qualifier declarator � dtor � � � (D12)

Again the type information is extracted from the type environment.

� � � ��� declarator �� � ��� declarator � dtor � � �� � declarator (parameter-type-list) � dtor � � � (D13) FUNCTION

DECLARATORS

� ��� declarator �� ��� declarator � dtor � func � � $� ��� � ! � � rec ��� ��� parameter-type-list �� � � � � �� ! � parameter-type-list � prot � � ���� declarator (parameter-type-list) � dtor � func � � $����� (D14)

In the case of function declarators, two subcases must be distinguished. If the function declarator is
not “terminal”, in the sence that the declarator it contains is not a simple identifier, then the necessary
type information is simply extracted from the type environment. On the other hand, if the function
declarator is “terminal”, the type information is again extracted from the type environment and the
parameter type list must be valid and must correspond to the function’s type.

9.2.2 Function prototypes and parameters

� � � � prot � � � � (D15) PARAMETER

TYPE LISTS

� � � ellipsis � �
� � ... � prot � � � (D16)

� � parameter-declaration � par � � � ��� parameter-type-list � prot � ��� � ! � � � � ���� parameter-declaration parameter-type-list � prot � � ! � (D17)

The cases of empty and ellipsis parameter type lists are straightforward. In the case of a parameter
type list consisting of a series of parameter declarations, all components must be valid and the type of
the first parameter is prepended to the function prototype that corresponds to all other parameters.

��� declarator � dtor � obj � � $ ���� � declaration-specifiers declarator � par � � � (D18) PARAMETER

DECLARA-
TIONS

In the case of parameter declarations, the necessary type information is extracted by the type environ-
ment.

9.2.3 Initializations

The typing semantics of initializations is specified in - 6.5.7 of the standard. Deviation D-6 stated in
Section 2.3 should be kept in mind.

� ����� �
isScalar � � ��# isStructUnion � � �� ��� � init � obj � � $ ��� (I1) SIMPLE INI-

TIALIZATION

120 Chapter 9. Typing semantics of declarations

����� � � � � datify ����� � init � bitfield � $ �� ��� (I2)

An expression that can be assigned to a scalar, structure or union type is a valid initializer for such an
object. Initializers for bit-fields must be valid initializers for the corresponding data types.

isStringLit � � � isCompatibleQual � � obj � char $ � ������ � init � array � � �� ��� (I3)STRING INI-
TIALIZATION

isWideStringLit � � � isCompatibleQual � � obj � wchar t $ � ������ � init � array � � �� ��� (I4)

String and wide string literals are valid initializers for arrays of the appropriate character type, or any
type compatible to that. The length of the arrays is of no importance here.

��� initializer-list � init-a � � ���� � initializer-list
� � init � array � � �� ��� (I5)AGGREGATE

INITIALIZA-
TION ��� initializer-list � init-s � � ���� � initializer-list

� � init � obj � struct � � �� � $ ��� (I6)

��� initializer-list � init-u � � ���� � initializer-list
� � init � obj � union � � �� � $ ��� (I7)

Except for the case of rules I3 and I4, initializers for aggregate types must be bracketed lists of initial-
izers. Three cases are distinguished: array, structure and union initializers. The initializer list in each
case must be of the appropriate phrase type.

��� initializer � init � � ���� initializer � init-a � � � (I8)ARRAY INI-
TIALIZATION

��� initializer � init � � � ��� initializer-list � init-a � � ���� initializer initializer-list � init-a � � � (I9)

An initializer list for an array type must consist of a sequence of one or more initializers for the type
of the array’s elements.

��� initializer � init � � � � � � �� !�# � � � ���� initializer � init-s � � � (I10)STRUCTURE

INITIALIZA-
TION ��� initializer � init � � � � � � �� !�# � � � � ��� initializer-list � init-s � � ! ���� initializer initializer-list � init-s � � � (I11)

An initializer for a structure must consist of a sequence of one or more initializers for the structure’s
members, in the order in which the members were declared. The number of initializers in the sequence
needs not be equal to the number of members in the structure.

��� initializer � init � � � � � �� !$# � � � ���� initializer � init-u � � � (I12)UNION INI-
TIALIZATION

An initializer for a union must consist of a single initializer for the union’s first declared member.

Chapter 10

Typing semantics of statements

This chapter contains the typing rules for statements, i.e. inference rules aiming primarily at associat- CHAPTER

OVERVIEWing statements and statement lists with phrase types of the form stmt � by means of formal typing
derivations. Section 10.1 defines the main typing relation for statement lists, whereas Section 10.2
does the same for statements. The structure of the latter corresponds roughly to the structure of - 6.6
of the standard. In Section 10.3 a final typing rule that corresponds to missing optional expressions is
defined.

10.1 Statement lists

The typing semantics of statement lists is only indirectly defined in the standard.

� � � � stmt � � � (S1) EMPTY

STATEMENT

LIST

An empty statement list can be attributed any type of the form stmt � .

� � statement � stmt � � � ��� statement-list � stmt � � ���� statement statement-list � stmt � � � (S2) NON-EMPTY

STATEMENT

LIST

A non-empty statement list can be attributed type stmt � if all its components can be attributed the
same type.

10.2 Statements

The typing semantics of statements is defined in - 6.6 of the standard. Further distinction is made
between different kinds of statements.

10.2.1 Empty and expression statements

The typing semantics of the empty and expression statements is defined in - 6.6.3 of the standard.

� � ; � stmt � � � (S3) EMPTY

STATEMENT

An empty statement can be attributed any phrase type of the form stmt � .

122 Chapter 10. Typing semantics of statements

��� expression � exp � � ! ���� expression ; � stmt � � � (S4)EXPRESSION

STATEMENT

An expression statement can also attributed any phrase type of the form stmt � , on condition that its
expression is attributed a valid expression type.

10.2.2 Compound statement

The typing semantics of compound statements is defined in - 6.6.2 of the standard.

� ! � � rec ��� declaration-list �� � � � � � ! � declaration-list � decl � ! � statement-list � stmt � � ���� � id declaration-list statement-list
� � stmt � � � (S5)BLOCKS

Compound statements or blocks can be attributed type stmt � on two conditions: (i) its declaration
list can be attributed type decl ; and (ii) its statement list can be attributed type stmt � .

10.2.3 Selection statements

The typing semantics of selection statements is defined in - 6.6.4 of the standard.

��� expression � exp � � ! � isScalar � � ! � ��� statement � stmt � � ���� if (expression) statement � stmt � � � (S6)IF-THEN

STATEMENT

��� expression � exp � � ! � isScalar � � ! ���� statement
� � stmt � � � ��� statement

� � stmt � � ���� if (expression) statement
�
else statement

� � stmt � � � (S7)IF-THEN-ELSE

STATEMENT

In both forms of the if statement, the condition must be attributed a valid scalar expression type. The
types of the two clauses determine the type of the whole statement. If the if statement has an else
clause, then both clauses must be attributed the common result type.

��� expression � exp � � ! � isIntegral � � ! � � ! ! � � intPromote � � ! � ��� statement � stmt � � ���� switch (expression) statement � stmt � � � (S8)SWITCH

STATEMENT

The controlling expression of the switch statement must be attributed a valid integral expression type.
The statement forming its body determines the type of the whole statement.

10.2.4 Labeled statements

The typing semantics of labeled statements is defined in - 6.6.1 of the standard. In general, the type of
a labeled statement is determined by the type of the underlying statement, without the label.

��� constant-expression � val � � ! � isIntegral � � ! � � � statement � stmt � � ���� case constant-expression : statement � stmt � � � (S9)CASE LABEL

As specified in - 6.6.4.2 of the standard, the expression present in a case-labeled statement must be a
constant integral expression.

��� statement � stmt � � ���� default : statement � stmt � � � (S10)DEFAULT

LABEL

10.3. Optional expressions 123

��� statement � stmt � � �� � I : statement � stmt � � � (S11) IDENTIFIER

LABELS

The typing semantics of these two cases is straightforward.

10.2.5 Iteration statements

The typing semantics of iteration statements is defined in - 6.6.5 of the standard. In general, the type
of an iteration statement is determined by the type of its body.

� � expression � exp � � ! � isScalar � � ! � ��� statement � stmt � � ���� while (expression) statement � stmt � � � (S12) WHILE

STATEMENT

� � statement � stmt � � � ��� expression � exp � � ! � isScalar � � ! ���� do statement while (expression) ; � stmt � � � (S13) DO-WHILE

STATEMENT

The typing semantics of the while and do statements is similar. The controlling expression must be of
a valid scalar expression type.

��� expression-optional
� � exp � � � � ��� expression-optional

� � exp � � � ���� expression-optional
� � exp � � � � isScalar � � � � ��� statement � stmt � � �� � for (expression-optional

�
; expression-optional

�
; expression-optional

�
) statement � stmt � � � (S14) FOR

STATEMENT

The typing of the for statement is slightly more complicated. All expressions must be attributed valid
expression types. In addition, the second expression, which controls the statement, must be of scalar
type.

10.2.6 Jump statements

The typing semantics of jump statements is defined in - 6.6.6 of the standard.

� � continue ; � stmt � � � (S15) CONTINUE

STATEMENT

� � break ; � stmt � � � (S16) BREAK

STATEMENT

� � goto I ; � stmt � � � (S17) GOTO

STATEMENT

These three statements can be attributed any type of the form stmt � .

� � return ; � stmt � � � (S18) RETURN

STATEMENT

According to the standard, a return statement that does not specify the returned value can be used in
any function, provided that the returned value is not used. Thus, this form of the return statement can
be attributed any type of the form stmt � .

��� expression �
�

� � return expression ; � stmt � � � (S19)

This form of the return statement is the one that determines the types of all statements. It can be
attributed type stmt � , on condition that the specified expression is assignable to the data type .

124 Chapter 10. Typing semantics of statements

10.3 Optional expressions

��� � � val � int � (S20)MISSING

EXPRESSION

In for statements, it is possible to omit any of the three controlling expressions. In order to preserve the
simple typing semantics of the for statement, such missing expressions are attributed type val int � ,
which is a valid scalar type and can be used in the desired way. This type is preferred over exp int � ,
since missing optional expressions could be replaced by the constant expression “1”.

Part IV

Dynamic semantics

Chapter 11

Dynamic semantic domains

This chapter defines the domains that are used for the description of the dynamic semantics of C. Do- CHAPTER

OVERVIEWmains are defined together with operations that are allowed on their elements. Section 11.1 discusses
the structure of dynamic semantic domains. In Section 11.2 a few auxiliary domains are defined,
whereas Section 11.3 defines the domains that are used for the representation of C’s types. The dy-
namic semantics of C is defined by means of a number of monads. The value monad is defined in
Section 11.4 and the powerdomain monad in Section 11.5. Section 11.6 presents an abstract defini-
tion of the program state, and the definition of monads continues in Section 11.7 with the continuation
monad, Section 11.8 with the resumption monad transformer and Section 11.9 with the monad used for
expressions. In Section 11.10 and Section 11.11 the dynamic domains for environments and scopes
are defined respectively, whereas Section 11.12 presents monads that are responsible for statement
semantics. Finally, in Section 11.14 a set of auxiliary functions is defined.

11.1 Domain ordering

The domain ordering relation is easily defined for most dynamic semantic domains, since these are
typically defined by using standard domain constructors. This ordering is again very important. It rep-
resents execution properties of C programs. Bottom elements model non-termination, as is usually the
case with dynamic semantics and top elements model the occurence of errors, usually run-time errors.
Intermediate values represent results of computations which produce at least some non-erroneous re-
sults. Non-termination and errors are propagated when necessary by various operations of the dynamic
domains and by monad operations.

11.2 Auxiliary domains
� � ��� ��� (undefined) OBJECT

IDENTIFIERS

The elements of domain �
�� are used to uniquely identify objects in memory. A complete definition
of this domain is not given here. However, it is expected that information about object types be present
in elements of �
�� . It should be noted that objects contained in other objects, e.g. array elements or
structure members, are not assigned separate identifiers: elements of �
�� correspond to the largest
possible objects.

� newObject � �	� ���
Function newObject
 returns a fresh identifier for a new object of type � .

128 Chapter 11. Dynamic semantic domains

� � ��� ' (
(undefined)FUNCTION

IDENTIFIERS

In the same way, domain � + � represents unique identifiers for functions. The types of functions are
kept separately and need not be present in elements of � + � .

� newFunction ���)' (

Function newFunction returns a fresh identifier for a new function.

� � ��� � � � � � ����� ��� � ���
ADDRESSES

The addresses of objects in memory are represented by elements of domain � 	 	 � . Such addresses
contain two pieces of information: the (possibly) larger object that completely contains the addressed
object and the offset of the addressed object in the larger object.

� � ����� � � � � �� � ��	 ' � � � � � �

The domain of offsets, as well as that of offsets to specific bits in a byte, is simply a synonym for the
domain of integer numbers.

� addrOffset � � � �
� � � � ��� � � �
addrOffset � ��� � � � ��� ������� � � # � � ' (� � �) � � sizeof � � � #

Function addrOffset
 returns the address of an object of type � that is displaced by � positions from
a similar object with given address . This function is used for calculating the addresses of array
elements.

11.3 Types

The domains defined in this section represent dynamic elements of various kinds of static types, with
the exception of phrase types that are treated in a different way in the next chapters. Table 11.1
presents the definitions of dynamic semantic domains for types. It should be noted that domains such
as �� are flat domains whose elements represent the values of the corresponding types. All integral
domains, e.g. ��� � and � ��� , are subdomains of � . Pointers are represented as addresses or a special
value denoting the null pointer. The dynamic meaning of structures and unions, treated as data types,
is a mapping returning their members’ values. The domain constructor ��� � � � � �"! is defined in
Section 11.10.2.

The dynamic meaning of object types is straightforward. Single objects are represented by their
addresses and arrays by functions returning the meanings of their elements. Function types are rep-
resented by functions from the dynamic meaning of their arguments to the dynamic meaning of an
expression computation, resulting in the returned type; � � ��� 7 � ! is defined in Section 11.10.3 and
monad � in Section 11.9. The definition of dynamic semantic domains for denotable, member and
value types is also straightforward. It should also be mentioned that if two types � and � are compati-
ble, i.e. isCompatible � � � � � , then the corresponding dynamic semantic domains are also compatible,
i.e. � � �
 � � � .

11.3. Types 129

Table 11.1: Dynamic semantic domains for various kinds of static types.

Data types

� � void � � ����� � �
� � char � � ����� � ���
� � signed-char � � ����� � �����
� � unsigned-char � � ����� � � � �
� � short-int � � ����� � �����
� � unsigned-short-int � � ����� � � � �
� � int � � ����� � ��� �
� � unsigned-int � � ����� � � � �
� � long-int � � ����� � �����
� � unsigned-long-int � � ����� � � � �
� � float � � ����� � � �
� � double � � ����� � ���
� � long-double � � ����� � ���	�
� � ptr � � � � � ����� � � � � � ���
� � ptr � � � � � ����� � � ' (���
� � enum � � � � � ����� � � ��

� � struct � � �� � � � ����� � � � � � �� � � ��� � � � �����
� � union � � �� � � � ����� � � � � � �� � � ��� � � � �����

Object types

� � obj � � $ � � � ����� � � � � �
� � array � � �� � � � ��� � � � � � � � � � ��� �

Function types

� � func � � �� � � � � 1� � � � � � � �
2 � � ��� � � � � � � ����� �

Denotable types

� � � � � ���$� � � � � � � �����
� � � � � ����� � � ' (

Member types

� � � � � ����� � � � � � � �����
� � bitfield � � $ �� � � � ����� � � � � � � 	 ' � � � �

Value types

� � � � � &��(' � � � � � � �����
� � � � � &��(' � � ' (

� toAddr � � � � � � � ��� � ��� � � �
toAddrobj � � % � � � id
toAddrarray � � % � � ����� � � toAddr � � � � � �

OPERATIONS

ON

ADDRESSES

� fromAddr � � � � � � � � � � � � ��� �
fromAddrobj � � % � � � id
fromAddrarray � � % � � �8� ��� � � � � � � � ��� � � � � � � fromAddr � � addrOffset � � � � �

These two functions convert between addresses and dynamic meanings of objects. In the case of
single objects, their addresses are identical with their dynamic meanings. The address of an array is
the address of its first element.

� cast ���� ��� � � � � � � ����� � � � � ! � � ����� TYPE CASTING

This function models the dynamic semantics of type casting. It converts a dynamic value of type to
one of type � . Its definition is omitted here.

� zeroValue � � � � � � � ������ checkBoolean � � � � � � � ����� ��'
ZERO VALUES

These two functions create and detect zero dynamic values of a given data type . Zero values are
specially treated by C in initializations and pseudo-boolean conditions. Function zeroValue � returns
a zero value of type , while function checkBoolean � returns true if its parameter is non-zero, false
otherwise. Their definitions are omitted here.

130 Chapter 11. Dynamic semantic domains

11.4 Value monad

The trivial identity monad is used for representing the computation of constant values, that is, compu-
tations that do not affect the program state or any other part of the abstract interpreter’s environment.
The definition of monad � is given below.

� & ��� ��� � � �DEFINITION

Equality and domain ordering are trivially defined, and the definitions of the monad’s operations are
also trivial. The monad’s unit is defined by:

� unit � � � ��� ��� �
unit � � id

and the bind operator by:

� � 3 � � ��� �	� �/� �	� ��� �	
 � � ��� �	
 �
& 3 � � � � &

It is easy to see that monad � satisfies the three monad laws and preserves bottom and top elements.

An operation for generating errors can also be defined, using the top element as a representationERRORS

for errors. However, it should be noted that errors are only propagated by using the bind operator on
strict functions.

� error � ��� ��� �
error � ���

Finally, a polymorphic operation for converting elements of type � ��� � to elements of type � ��� �LIFTING

is required in the sequel. This operation needs only distinguish the case of errors.

� lift �	�
� � � �	� � ��� �	� �
lift �	�
� � � id � � � � �

The inverse operation is also needed. It is defined as:

� lift ��� � ��� �	� � � � �	� �
lift ��� � �8� & � � & ��� � � unit & error �

11.5 Powerdomain monad

The convex powerdomain monad
	

has been defined in Section 3.3.6 and many of its properties have
already been discussed there. A summary of its definition is repeated here for completeness. Monad	

is used in the rest of the thesis to represent non-deterministic computations. It is defined as:

� � ��	��� � � ���DEFINITION

The unit is simply the singleton operation for the convex powerdomain:

11.6. Program state 131

� unit � ��� � ��� �
unit � ��� & � ����& ��

and the bind operator is defined using the ext
�

function.

� � 3
�
� � 	�	� �� �	� � 	�	
 � � � 	�	
 �

� 3 � � � ext � � �
The resulting monad satisfies the three monad laws and preserves bottom and top elements. Moreover,
the powerdomain operator �

�
can be used on domains of type

	 ��	 � :
� ��� � � � 	��� �� 	��� � � ��� �
This operator implements the combination of multiple values in a single element of

	 ��	 � and is used
in expressing the semantics of non-determinism.

11.6 Program state

The domain of program states � is one of the most delicate dynamic domains in the specification of
the semantics of C. In this thesis, domain � is defined only indirectly as an abstract data type, by fear
that a complete definition would be overly complicated and would impose unnecessary restrictions on
the semantics.

� � � � (undefined)

Elements of � are program states, i.e. abstract representations of the contents of the computer’s mem-
ory when the C program is executed. Program states should reflect the memory model suggested in
the standard, where each memory location contains a single byte and the values of objects are stored
in a series of consecutive memory locations. In brief, a program state should know:

� which memory locations are occupied;
� what the contents of the occupied locations are; and
� what side effects have been generated since the last sequence point.

A set of operations allows the manipulation of program states. The requirements from these oper-
ations are briefly stated below.

� stateAllocate � � � � � � � ����� � � � � OBJECT

ALLOCATION

This function allocates an object in memory. The address of the object is given in the first parameter,
while the initial program state is given in the second. Note that addresses are not absolute and this is
the reason why they are passed as parameters; it not the responsibility of function stateAllocate &
to find a free address for a new object. The result is the new program state. An erroneous state ��� is
returned in case of an error, e.g. if the given address has already been allocated.

� stateDestroy � � � � � � � ����� � � � � OBJECT DEAL-
LOCATION

This function deallocates an object from memory. The address of the object is given in the first
parameter, while the initial program state is given in the second. The result is the new program state.
An erroneous state ��� is returned in case of an error, e.g. if the given address has not been allocated.

132 Chapter 11. Dynamic semantic domains

� stateRead � �� � � � � � � � ����� � � � � � � � � �����READ ACCESS

This function reads the value of an object from memory. The address of the object is given in the first
parameter, and the program state in the second. The result is the contents of that address, regarded as
a value of data type . It is required that % and satisfy the condition �
 datify � % � . It should be
noted that an error must occur if type % is not compatible with the type of value stored in the given
address, as stated in - 6.3 of the standard. An error should also occur if a write side effect is pending
for the same memory location. Moreover, if the contents of a volatile address are read, a read side
effect should be generated.

� stateWrite ���� � � � � � � � � �$� � � � � � � ����� � � � �WRITE

ACCESS

This function writes a value to an object stored in memory. The address of the object is given in the
first parameter, the value to be written is given in the second parameter and the program state in the
third. The result is the new program state. It is again required that % and satisfy the condition
 �
 datify � % � . Also, an error must occur if type % is not compatible with the type of value stored
in the given address, as stated in - 6.3 of the standard, or if a write side effect is pending for the same
memory location. In addition, a new write side effect should be generated.

� stateCommit � � � �COMMIT

CHANGES

This function implements sequence points. It takes as a parameter the current program states and
performs all pending side effects. The result is the new program state.

11.7 Continuation monad

Continuations have been suggested a long time ago for specifying the semantics of programming lan-CONTINUA-
TIONS guages with complex control structures. Their presence in the developed semantics is mainly dictated

by C’s jump statements.

� � � � � 	� � �� � (undefined)

The elements of domain are continuations, i.e. functions that take as parameter the current program
state and return the final result of the program’s execution. It should be mentioned that the final result
is in general non-deterministic1 and this is the reason why the powerdomain monad is used. The final
result of the program’s execution is represented by an element of the domain � of answers. This
domain needs not be defined in this thesis. Useful options for its elements are:

� The int result of function main;
� The final program state; or
� A function from inputs to outputs, assuming that library I/O functions have been modelled.

The continuation monad has been one of the first applications of monads in the semantics ofDEFINITION

programming languages. Its definition follows:

11.7. Continuation monad 133

� 	 � � ��� � � ��� � � � � �

Intuitively, elements of
� ��	 � represent computations that result in a value of type 	 . The meaning of

such a computation is a function which, given the continuation that corresponds to what follows the
computation, parameterized by the computation’s result, returns a continuation for the whole program
including the computation. The unit of monad

�
is defined as:

� unit � ��� � � ��� �
unit � ��� & � ��� � � &

whereas the bind operator is defined as:
� � 3

�
� � � �	� �� �	� � � �	
 � � � � �	
 �

	-3
�
� �8��� ��	 � � ��� � � � �

It is easy to show that the three monad laws are satisfied. However, the continuation monad does not
preserve bottom and top elements, i.e. unit � � ���
������ ��� .

Errors in computations are again represented by top elements of domains constructed with
�

. ERRORS

� error � � � ��� �
error � �8� � � 	

It is easy to verify that errors are correctly propagated, that is:

error �
3
�
� � error �� 3

� � � ���
error � � � error �

The same propagating properties can be verified for bottom elements �	��� ��� , which represent non-
termination.

Two polymorphic function are required for the lifting of computations expressed by previously LIFTING

defined monads. The primary lifting function is lift
 � � while lift � � � is defined in terms of other
already defined lifting functions.

� lift ����� ��� �	� � � � �	� �
lift ����� � unit �

� lift �	��� � � �	� � � � �	� �
lift �	��� � lift ����� � lift � � �

Three special functions for the continuation monad are defined next, together with a non-determi-
nistic option operator. They are useful in the developed semantics and will be used in the following
sections.

� escape � � � � �	� �
escape �8� 	(� ��� � 	

ESCAPE

This function takes a continuation � as a parameter. It returns a computation which ignores its normal
continuation and uses � instead. It is useful in specifying the semantics of jump statements.

1 According to the author’s interpretation of the standard, C allows the development of programs that may produce
different answers depending on implementation-defined or unspecified matters, such as evaluation order. An example of
such a program is discussed in Section 17.3.

134 Chapter 11. Dynamic semantic domains

� getState � � � � � �
getState � ��� � � � � � � � �

ACCESS THE

STATE

� setState � � � � � � � � � � � �
setState � �8� � � ��� � � � � � � � � � �

These two functions are used for accessing the program state, which is hidden inside continuations.
The result of getState � is a computation which results in the current program state, leaving it intact.
Function setState � takes as parameter a function � from states to states. It returns a computation in
which the current program state is modified by applying � and whose result is the program state prior
to the modification.2 It should be noted that getState � could have been defined in terms of setState �
as:

getState � � setState � id

� � �
�
� � � �	� � � � �	� � � � �	� �

	�� �
�
	�� ��� � � � � � � 	�� � � � � � � 	�� � � �

OPTION

OPERATOR

The polymorphic option operator executes one of its operands in a non-deterministic way. The same
continuation and program state is used in both cases and the final program answers are combined.

11.8 Resumption monad transformer

In order to express the dynamic semantics of interleaved evaluation of C expressions, a special typeMOTIVATION

of recursive domain is needed. This domain represents the notion of interleaved computations. An
interleaved computation can be viewed as a sequence of atomic steps. In isolation, these atomic
steps are performed one after another, until the expression’s evaluation is complete. However, in the
presence of other computations, it is allowed that the sequences of atomic steps are interleaved. The
atomic steps of any given computation must be executed in order, but this process can be interrupted
by the execution of atomic steps belonging to different computations.

In this section we attempt to define a domain capable of modelling generic interleaved computa-
tions of type � ��	 � . One possible solution is the domain which contains as elements the resumptions
of computations defined by � . This domain is denoted as � � � � ��	 � and satisfies the following
isomorphism:

� � �0. � ��� ��� � � . � � �0. � ��� � �
In this domain, atomic steps are arbitrary computations defined by � . The left part of the coalesced
sum represents an already evaluated result, i.e. a computation that consists of zero atomic steps. The
right part represents a computation that requires at least one atomic step. The result of this atomic step
is a new element of the resumption domain.

Resumptions have been long suggested as a model of interleaved execution in programming lan-
guages. For an extensive treatment, the reader is referred to [dBak96], where domains like the one

2 The result of setState � is useful in the case of postfix unary assignment operators.

11.8. Resumption monad transformer 135

defined above are called branching domains and many variations for specific instances of � are ex-
plored. In the present thesis, a structured generalization of this technique is attempted. The atomic
steps are allowed to represent any type of computation and are defined by an arbitrary monad � .
In this way, a monad transformer is defined, which transforms monad � to a new monad � � � � of
interleaved computations. The definition of this monad, its properties and implementation are given
in the next subsections.

11.8.1 Definition

Consider a locally continuous arbitrary monad � . In order to define the monad transformer � it is GOAL

necessary to define a monad � � � � . Therefore, it is necessary to define:

� A domain constructor, i.e. a domain � � � � ��	 � for each domain 	 ;
� A function mapping, i.e. a continuous function � � � � ��� � � � � � � ��� � � � � � � ��� � for each

continuous function ����� � � ; and
� The unit and bind operators, which must satisfy the three monad laws.

Moreover, the domain constructor should satisfy the aforementioned isomorphism.

Consider an arbitrary monad � and an arbitrary domain 	 . Then it is possible to define an PRELIMINAR-
IESendofunctor

��� % � � � ��� � � ��� using the following domain constructor:

����� 	 �
	 � � � �5. �
	 �
For an arbitrary continuous function � � � � � , function

��� % � ��� � � ��� % � ��� � � ��� % � ��� � is
defined as follows:

� ��� 	 � � � � � inl inr � . � � � �
Lemma 11.1.

��� % � ��� � � inr
 inr � � ��� �
Proof: According to the previous definition:

��� % � ��� � � inr % �
 inl � inr � � ��� � � � inr % �
 inr � � ��� �
Also, let

���� % � � � ��� �� � � ��� �� be the endofunctor induced by
��� % � on the category of

ep-pairs:
������ 	 �
	 � � ����� 	 �
	 ������� 	 ���� � � � ����� 	 ������ � ����� 	 ������ � #

According to Theorem 3.18, domain � is an initial object in category � ��� �� and there is a unique
ep-pair �	 � � � � � % � � � � with �	
 � � ��� � .

Let us now define a diagram
� � � � � ��� �� as:

� � � �� � ��� 	 � � � �� � ��� 	 � �� � # �����
Following the process described in [Gunt92, p. 325] let us define a domain � �

as follows:

� � � � � � � � ����� � � � �! � � � � � � ��� 	 � � � � � � � � � ��� 	 � �� � � � � � 	 � � �

and a point-wise ordering of its elements:

136 Chapter 11. Dynamic semantic domains

� � � � ����� � � � � � ������� � � �! � � � � � �

Let us also define a cone �� � � � � � with ep-pairs �� � �
� � � % � � � � � � � given by:

�� �� � 9 � � � � � � � ��� where �
�

�
� � � � ��� 	 � �� � � � � � � �

��� ���� 	 � �� � � � � 9 � � ,�
� � � � ���� 	 � �� � � � �+� � �

� ��� 	 � �� � � � � 9 � �
�,�

�� � � � � � � � �

In [Gunt92, p. 325] it is proved that the cone �� defined in this way is colimiting. Also, by continuity
of

���� % � if follows that the cone
���� % � ���� � �

���� % � � � � �
���� % � � � � � is also colimiting and, due to

Theorem 3.22, the unique mediating ep-pair �� � % � � ��� % � � � � � � � � between cones
���� % � ���� � and

�� � is an initial
�� � % � -algebra. The mediating ep-pair �� � % � satisfies the following properties for all

� � � :

�� ���� 	 � � ��� 	 � �� �� � � �� �� 	 ������ 	 � �� � � � � �� � ��� 	 � �� � � 	 �
Taking into account that the domain

� � % � � � � � has been defined as 	 � � � � � � , the aboveISOMORPHISM

ESTABLISHED proof that �� � % � is a unique
���� % � -algebra establishes an isomorphism between domains � �

and
	�� � � � � � . The components of �� � % � are continuous functions of the following types:

�� ���� 	 � � �5. � � � � � � �
�� � ��� 	 � � � � ��� . � � � �

Notice however that the existence of the ep-pair �� � % � has been proved but the ep-pair has not been
constructed.

With all this in mind, it is a reasonable choice to define the domain constructor of the monadDOMAIN

CONSTRUCTOR transformer � as follows:
� �0. � ��� � � � �

Consider a continuous function � ��� � � . A continuous function � � � � � � � � can beFUNCTION

MAPPING defined as follows:
� � � � � � ����� � ��� � � �� � � � � �����

where function 	�
 % �� � ��� � � � � � � � %
 � � � � � � � % � � � � is defined as:

� � � � � ���
� � � �� 	 � � � � inl � � inr � . ��� � � �� � ���

In this way, it is reasonable to define the function mapping required for the monad transformer � as:
� �0. � � � � � � �

The unit function unit � � � � � 	 � � � � � ��	 � can be defined as follows:UNIT AND

BIND

unit � � , � � � � � � � ��� where � �����
� � � inl

� ���� �
Also, the bind operator � ��� � � � � � � � � � ��� � � ��� � � � � � ��� � � � � � � � ��� � can be defined as
follows:

11.8. Resumption monad transformer 137

� � � � ����� 3 � � , � � ��� � � �� � � � � �����
where function �
 % �� � ��� � � � � � � � � %
 � � � � � � � % � � � � is defined as:

�
� � � � ���
�
� � �� 	 � � � � � � � � � � � � 	 � inr � . ��� � � �� � � �

Theorem 11.2 (1ST MONAD LAW). � unit � � � � � � � � � � ���
�� � MONAD LAWS

Proof: The left hand side is equal to ���
 % �� � � unit � � � � � � � � �"!$#
If �
 �

then �
 % �
� � � unit � � � � � � �
��
 % �

� ���
 �
 ��� � � �
If ��� � then �
 % �

� � � unit � � � � � � �
��
 % �
� � � inl � �
 ��� � � �

Therefore, for all � it is �
 % �� � � unit � � � � � � �
 ��� � � �

Lemma 11.3. �
 %
� unit � � � �
 id
Proof: By induction on � . If �
 �

then �
 %
� unit � � � �
 �
 id � ���
If ��� � let us assume that it holds for � � � . Then:

�
 %
� unit � � � �

 � � � unit � � � � � � � inr �	� ���
 %
� � � unit � � � � � �

 � � inl � inr � � � id � �

 inl � inr � id �

 inl � inr �

 id

Theorem 11.4 (2ND MONAD LAW). � � � � � � unit � � � �
 �
Proof: Let �
 � � � � �"!$# . Starting from the left hand side and using Lemma 11.3 we have:

� � � � � � unit � � � �
 ���
 %
� unit � � � � � � � �"!$#
 � id � � � �"!$#
 � � � � ��! #
 �

Lemma 11.5. �
 % �� � � inr
 inr � � ���
 % �
� � � � �

Proof: If �
 �
both sides are equal to � . If ��� � , from the definition of �
 % �� � we have:

�
 % �� � � inr % �
 � inr �	� ���
 % �
� � � � � � %

Lemma 11.6. �
 % 	� � � � ��� � % 	& 	 ��� � & � & !$# �
 ��� � % 	� 	 � � ���
 % �� � �
Proof: By induction on � . If �
 �

then both sides are equal to � . If �
� �
, assume that it holds

for � � � . Then:

138 Chapter 11. Dynamic semantic domains

�
 % 	
� � � � ��� � % 	& 	 ��� � & � & ! # �

 � � � � % 	� 	 ��� � � � inr �	� ���
 % 	
� � � � � � ��� � % 	& 	 ��� � & � & ! # � � �

 � Definition of �
 % �� � � inl � and inductive hypothesis �
 � � � � % 	� 	 ���
 % �� � � inl � � � inr �	� ��� � % 	

� � � 	�� �
 % �
� � � � � �
 � � % 	� 	�� �
 % �� � � inl � inr � � ��� � % 	

� � � 	 � � � ���
 % �
� � � � � �
 � Lemma 11.5 twice �

 � � % 	� 	�� ��
 % �� � � inl � � � % 	� 	�� inr �	� ���
 % �
� � � � � �
 � � % 	� 	�� �
 % �� � � inl � � � % 	� 	�� �
 % �� ��� inr �

 � � % 	� 	�� �
 % �� � � inl � inr �

 � � % 	� 	�� �
 % �� � � id

 � � % 	� 	�� �
 % �� �

Theorem 11.7 (3RD MONAD LAW). � � � � � � � � ��� �� � � � � 	 �
 � � � � � ��� � � � � � 	
Proof: Let �
 � � � � �"!$# . Starting from the left hand side and using Lemma 11.6 we have:

� � � � � � � � � � �� � � � � 	 �

 ���
 % 	� � � � � �� � � � � 	 � � � � �"!$#

 ���
 % 	� � � � ��� � % 	& 	 ��� � & � & ! # ��� � � �"!$#

 � ��� � % 	� 	�� �
 % �� � ��� � � ��! #

 ��� � % 	� 	 ���
 % �� ��� � � � �"!$#

 ���
 % �� ��� � � �"!$# � � � � � 	

 � � � � ��! # � � � � � � � � � � � 	

 � � � � � ��� � � � � � 	

11.8.2 Definition of the isomorphism

Some operations involving domains of the type � � � � ��	 � can be defined in a much more natural wayBACK TO THE

ISOMORPHISM in the isomorphic domain 	 � � � � � � � ��	 � � . For this reason, it is useful to define the ep-pair �� � % �
which establishes the isomorphism. Then, it is possible to define operations in any of the two domains
and induce the corresponding operations on the other domain by applying �� � % � appropriately.

Consider an arbitrary element � � � � ��! # � �
�

. According to the definition of � �
we know that

� �

� � � % � � �	 � � � � ��� � � . Then, we can distinguish two cases:

� If � ��� �
 inl � for some
� � 	 , then:

� �
 inl � inr �	� � � �
� �� % � � �	 � � � � � inl � �
 inl �

� If � ��� �
 inr % ��� � for some % ��� � � � � � � � % � � � � � then:

� �
 inl � inr �	� � � �
� �� % � � �	 � � � � � inr % ��� � �
 inr � � � � �

� �� % � � �	 � � � % ��� � �
Theorem 11.8. If � � � � �"!$# � � � then, with the exception of � � , all elements � � are either left or
right summands. That is, exactly one of the following is true:

11.8. Resumption monad transformer 139

(a) � �
�� 	 	 � ��	 � � � � � � � �
 inl �

(b) ��� � � ��	 % � � � � � �
� �� % � � � � � � � �
 inr % � 	 % �
��

Moreover, � ��� � � % �
 � � � �
� �� % � � �	 � � � % ��� �

Proof: Directly, from the previous remark.
Let us now attempt to define the ep-pair �� � % � � ��� % � � � � � � � � . The embedding part is easy. DEFINITION OF�� ��� 	

If
 ��	�� � � � � � then we define:

�� ���� 	 9 � � � � � ����� � � � where � �����
� � � � inl inr � . � �� � ��� � � � 9 ���� �

The projection part is defined by distinguishing two cases, based on Theorem 11.8. Consider an
element �
 � � � � ��! # � �

�
.

� If � ��� � � � �
 inl � , for some
� ��	 , then we define:

�� � � % � �
 inl �

� If � � � � � � �
 inr % � , with % � � � � � �
� �� % � � � � � , then we define:

�� � � % � �
 inr

�
�

�"!$#
� ���� � � � � % ���

First, notice that for all � � � we have � ���� � � � � � � � � �
� �� % � � � � � � � � � � � and therefore

� ���� � � � �% � � � � � � � . It must now be proved that the least upper bound exists. It suffices
to show that elements � ���� � � � � % � form an � -chain, which is stated by the following theorem.

Theorem 11.9. � ��� � � � ���� � � � � % �
 � ���� � � % ��� �
Proof: We have:

� ���� � � � � % �
 � ���� � � � � � � � � �
� �� % � � �	 � � � % ��� � �
 � ���� � � � �

� � � �� % � � �	 � � � % ��� �
Since � is locally-monotone, it suffices to show that �� � � � �

� � � �� % � � �	 � �
 �� � . Let
 � � � � % � � � � and
�
 � �'& � & !$# � �

�
with:

�
 �� � � � �
� � � �� % � � �	 � ��
 �

Then, by definition of �� � � � :
�'&

 � � � & � % � � �	 � � � � � � � �
� 	� % � � �	 � � � � � �

� �� % � � �	 � ��
 � � % � � �
� � &

� �� % � � �	 � � � � � � �
� �� % � � �	 � � � � �

� �� % � � �	 � �
 ��� % � � � �

 � � � & � % � � �	 � � � � � � � �
� 	� % � � �	 � � � � �

� �� % � � �	 � � ��
 � % � � �
� � &

� �� % � � �	 � � � � � � �
� �� % � � �	 � � � �

� �� % � � �	 � � �
 � % � � � �
Also, let �
 � � & � & !$# � �

�
with:

�
 �� �

Then again:

140 Chapter 11. Dynamic semantic domains

� &
 � � � & � % � � �	 � � � � � � � �
� �� % � � �	 � � ��
 � % � � �

� � &
� �� % � � �	 � � � � � � � � % � � �	 � �
 � % � � � �

For % � � � it is obvious that � &
 � & . For % � � � � we have:

�'&

 � � &

� �� % � � �	 � � � � � � � � % � � �	 � � � �
� �� % � � �	 � � � �

� �� % � � �	 � � ��

 � � &

� �� % � � �	 � � � � � � � � % � � �	 � � � �
� �� % � � �	 ���	 � � �

 � � &
� �� % � � �	 � � � � � � � � % � � �	 � � � �

� �� % � � id � �

 � � &

� �� % � � �	 � � � � � � � � % � � �	 � ��

 � &

The next thing to do is to prove that �� � % � is an ep-pair, that is, prove that �� � � % � � �� � % �
 id and
�� ��� 	

IS AN

EP-PAIR �� � % � � �� � � % �
 id . In fact, a stronger result is proved by the following two theorems.

Theorem 11.10. �� � � % � � �� � % �
 id
Proof: Both sides of the equation are functions of type 	�� � � ��� % � � � � � � ��� % � � . Proceed by
case analysis on the argument of this function and using the definitions of �� � % � and �� � � % � . First case:

� �� � � % � � �� � % � � � inl � �
 �� � � % � � �� � % � � inl � � ��
 �� � � % � � � � � ��! #
where � �
 � and � �
 inl � for ��� � . Then:

�� � � % � � � � � ��! #
 inl �

Second case:

� �� � � % � � �� � % � � � inr % �
 �� � � % � � �� � % � � inr % � �
 �� � � % � � � � � ��! #
where � �
 inr � � ���� � � � � � % � for � � � . Then:

�� � � % � � � � � ��! #

 inr

�
�

�"!$#
� ���� � � � � � � ���� � � � � � % � �

 inr

�
�

�"!$#
� ���� � � � � �

� �

� � � � % �

 inr

� �
�

��! #
� ���� � � � � �

� �

� � � � � % �

 � � is locally continuous �

inr

�
�

�
�

�"!$#
�� � � � � �

� �

� � � � % �

 � �� is colimiting �

inr � � � id � % �

 inr � id % �

 inr %

11.8. Resumption monad transformer 141

Theorem 11.11. �� � % � � �� � � % �
 id
Proof: Both sides of the equation are functions of type

��� % � � ��� % � . Consider an element
�
 � � � � ��! # �

��� % � . Proceed by case analysis based on Theorem 11.8 and using the definitions of
�� � % � and �� � � % � . First case, if � �
�� and � � � � � � �
 inl � , for some

� ��	 , then:

� �� � % � � �� � � % � � �
 �� � % � � �� � � % � � ��
 �� � % � � inl � �
 � � � � ��! #
where � �
�� and for all � � � :

� �
 inl � inr � � ���� � � � � � � � inl � �
 inl �

It is trivial to verify that �
 � . Second case, if � � � � ��� �
 inr % � , with % � � � � � �
� �� % � � � � � ,

then:

� �� � % � � �� � � % � � �
 �� � % � � �� � � % � � ��
 �� � % �
�

inr

�
�

��! #
� ���� � � � � % � � �
 � � � � ��! #

where � �
�� and for all � � � :
� �

 inl � inr � � ���� � � � � � �
�

inr

�
�

��! #
� ���� � � � � % � � �

 inr

�
� ���� � � � � �

�
�

�"!$#
� ���� � � � � % ��� �

 � Continuity of � ���� � � � � � �
inr

�
�

� ! ! #
� � ���� � � � � � �	� ���� � ! � � � � % � ! �

 inr

�
�

� ! ! #
� ���� � � � � � �

�

� ! � � � % � ! �

 � By the following Lemma 11.12 and because � ���� � � � � � �

�

� ! � � � % � ! are an � -chain �
inr

�
�

� ! � �
% � �

 inr % �
Again it is trivial to verify that �
 � .
Lemma 11.12. If % �
 � � � �

� �� % � � �	 � � � % ��� � for all ��� � and � � � � , then:
� ���� � � � � � �

�

� ! � � � % � !
 % �
Proof: Using the definitions of �� � � � � and �� � ! � � :

� ���� � � � � � �
�

� ! � � � % � !

 � � � �

� �� % � � �	 � ��� � � � � � � !
� 	� % � � �	 � � � % � !

 � � � � �
� �� % � � �	 � � � � � � � � � � � � !

� 	� % � � �	 � � � ��% � !

 � � � �

� �� % � � �	 � � � � � � � � � � � !
� 	� % � � �	 � � � % � ! � � � �

 � � � �
� �� % � � �	 � � � � � � ��% � ! � � � � � �

 � Repeating � � � � times in total �
% �

142 Chapter 11. Dynamic semantic domains

What remains to be done is to prove that �� � % � is indeed a mediating ep-pair between cones
�� ��� 	

IS

MEDIATING

EP-PAIR

���� % � ���� � and �� � . This is proved in the following two theorems.

Theorem 11.13. �� � % � �
��� % � ���� � �
 �� ��� �

Proof: Both sides of the equation are functions of type
� ��� �� % � � � � � � � . Proceed by case analysis

on the argument of this function. First case:

� �� � % � �
��� % � ���� � � � � inl � �

 �� � % � �
��� % � ���� � � � inl � � �

 �� � % � � inl � inr �	� ���� � � � � inl � � �

 �� � % � � inl � �

 � �'& � & !$#
where � �
 � and �'&
 inl � for % � � . It can easily be verified that also �� ��� � � inl � �
 � . Second
case, starting from the left hand side:

� �� � % � �
��� % � ���� � � � � inr % �

 �� � % � �
� � % � ���� � � � inr % � �

 �� � % � � inl � inr �	� ���� � � � � inr % � �

 �� � % � � inr � � ���� � � % � �

 � �'& � & !$#
where � �
 � and

� &
 inr � � ���� � & � � � � � ���� � � % � �
 inr � � ���� � & � � � �� � � % �
Consider also the right hand side:

�� ��� � � inr % ��
 � � & � & !$#
Two cases are distinguished again. If % � � � then �� � & � � � �� �

� & � �� % � � �	 � � � � � � � � �
� �� % � � �	 � � and

therefore:

�'&

 inr � � � � &

� �� % � � �	 � � � � � � � � �
� �� % � � �	 � � � % �

 � inr � � � � &
� �� % � � �	 � � � � � � � � � � � �

� �� % � � �	 � � � ��%

 � Lemma 11.1 applied repeatedly �

� � & � % � � �	 � � � � � � � � � � % � � �	 � � � inr � %

 � � & � % � � �	 � � � � � � � � � � % � � �	 � � � � inr % �

 � Definition of �� ��� � �

� &
On the other hand, if %�� � � � then �� � & � � � �� �

� & � 	� % � � �	 � � � � � � � � � % � � �	 � and therefore:

11.8. Resumption monad transformer 143

�'&

 inr � � � � &

� 	� % � � �	 � � � � � � � � � % � � �	 � � % �

 � inr �	� � � &

� 	� % � � �	 � ��� � � � � � � � � � % � � �	 � � � %

 � Lemma 11.1 applied repeatedly �

� � &
� �� % � � �	 � � � � � � � ��� �� % � � �	 � � inr � %

 � � &
� �� % � � �	 � � � � � � � ��� �� % � � �	 � � � inr % �

 � Definition of �� ��� � �
� &

Therefore, in general �
 � .

Theorem 11.14.
��� % � ���� � � � � ��

� � % �
 �� � ��� �
Proof: Both sides of the equation are functions of type � � � � ��� �� % � � � � . Proceed by case analysis
on the argument of this function, according to Theorem 11.8. Consider an arbitrary element �

� � � � �"!$# � �

�
. First case, if � �
�� and � � � � � � �
 inl � , for some

� ��	 , then:

� � � % � ���� � � � � ��
� � % � � �

 � � % � ���� � � � � ��
� � % � � �

 ��� % � ���� � � � � inl � �

 inl � inr � � ���� � � � � � inl � �

 inl �

 � ��� �

 �� � ��� � �
Second case, if � � � � � � �
 inr % � , with % � � � � � �

� �� % � � � � � , then:

� � � % � ���� � � � � ��
� � % � � �

 ��� % � ���� � � � � ��
� � % � � �

 ��� % � ���� � � �
�

inr

�
�

��! #
� ���� � � � � % � � �

 inl � inr � � ���� � � � �
�

inr

�
�

�"!$#
� ���� � � � � % � � �

 inr

�
� ���� � � �

�
�

��! #
� ���� � � � � % � � �

 � Similarly to the second case in the proof of Theorem 11.11 �
inr % ��� �

 � ��� �

 �� � ��� � �

144 Chapter 11. Dynamic semantic domains

11.8.3 Special operations

The two functions run and step convert an interleaved computation of type � � � � ��� � to a nonBRIDGE TO

INTERLEAVED

COMPUTA-
TIONS

interleaved computation of type � ��� � and vice-versa. The names of these functions indicate their
behaviour. If an interleaved computation is viewed as a sequence of atomic steps, the first function
runs this sequence without allowing other computation to intervene. The second function converts a
whole computation to a single atomic step in an interleaved computation.
� run � � �0. � ��� � ��. ��� �

run � fix � � 1 � � unit , � � � � 3 , 1 � � �� � ��� 	 �
� step �&. ��� � � � �0. � ��� �

step ��� � � �� ���� 	 � inr � � 3 , � unit , � �� ���� 	 � inl � � �
The following theorem connects the behaviour of the two functions.

Theorem 11.15. run � step
 id
Proof: According to the definitions of step and run and using the equational property of the least
fixed point operator, we have:

run � step % �

 run � �� � % � � inr � % � � � unit � � �� � % � � inl � � � �

 fix � �	 � unit � � � % � % � � 	 ��� �� � � % � � � �� � % � � inr � % � � � unit � � �� � % � � inl � � � �

 unit � � � % � % � � fix � �	 � unit � � � % � % � � 	 ��� �� � � % � � �

� �� � � % � � �� � % � � inr � % � � � unit � � �� � % � � inl � � � � �

 unit � � � % � % � � fix � �	 � unit � � � % � % � � 	 ��� �� � � % � � �

� inr � % � � � unit � � �� � % � � inl � � �

 % � � � unit � � �� � % � � inl � � � fix � ��	 � unit � � � % � % � � 	 ��� �� � � % � �

 % � � � � � unit � � �� � % � � inl � � � � fix � ��	 � unit � � � % � % � � 	 � � �� � � % � � �

 % � � � � � fix � ��	 � unit � � � % � % � � 	 ��� �� � � % � � � �� � % � � inl � � �

 % � � � � � unit � � � % � % � � fix � �	 � unit � � � % � % � � 	 ��� �� � � % � � �

� �� � � % � � �� � % � � inl � � � �

 % � � � � � unit � � � % � % � � fix � �	 � unit � � � % � % � � 	 ��� �� � � % � � � � inl � �

 % � � � � � unit � �

 % � � unit �

 %

In order to define an interleaved computation of type � � � � ��	 � , it is assumed that an non-INTERLEAVING

BEHAVIOUR deterministic option operator is defined for computations represented by monad � . This option
operator is denoted as

� � and has the type:
� � � , � �-. ��� � ��. ��� � ��. ��� �
The subscript may be omitted if it can be deduced from the context.

Assuming the existance of operator
� � , it is possible to define an operator of the resumption monad

transformer for performing the interleaving of computations. It is defined as follows:

11.9. Monad for expression semantics 145

� ��� � � � , � � � �0. � �	� �/� � �0. � �	
 � � � �0. � �	�%��
 �
� � � � , � fix � � 1 � � � � � # �� � &

�
� � 3 � � , � � &�� � unit � � , � &

� &�� # � � � �
�

� � & � � � 3 � � , � � &
�
�
unit � � , � &

�� & � # � � � � �
inr � � �

3 , � ��� ! � unit , � 1 � � ! � # � � � � � 3 , � � � ! � unit , � 1 � � � !$# � � � � � �
The subscript may be omitted if it can be deduced from the context. If one of the two computations
does not require the execution of any atomic step, i.e. if one of the two computations has already
been executed, then the other computation is executed and the two results are combined. Otherwise, if
both computations require at least one atomic step, then there is a non-deterministic option of which
computation will start executing.

11.9 Monad for expression semantics

Monad � represents the computation of C expressions. Such computations can affect the program DEFINITION

state and can be interleaved. For the definition of � , the resumption monad transformer is applied on
the continuation monad

�
.

� 1 � � ��� � � � ����� ��� �
The unit, bind operation and other properties of monad � are specified in terms of the corresponding
operations obtained from the resumption monad transformer.

Again the top element of domain � ��	 � represents errors in computations. Non-termination and ERRORS

errors are again correctly propagated.

� error � � � ��� �
error � ���

A number of polymorphic functions are needed for converting between values from various monad LIFTING

domains. Functions lift � ��� and lift � � � are primitive, whereas all others are defined in terms of other
lifting functions.

� lift � � � � � �	� � � � �	� �
lift � � � � step

� lift � � � � � �	� � � � �	� �
lift � � � � run

These two functions convert between interleaved and non-interleaved computations.

� lift �	� � � � �	� � � � �	� �
lift �	� � � lift � � � � lift ����� � lift �	� �

� lift ��� � ��� �	� � � � �	� �
lift ��� � � lift � � � � lift �����

The following functions implement special operations for monad � .

146 Chapter 11. Dynamic semantic domains

� getState � � � � � �
getState � � lift � � � getState �

ACCESS THE

STATE

� setState � � � � � � � � � � � �
setState � � lift � � � � setState �

These two functions are lifted versions of the corresponding functions for the continuation monad.
They are used in the definition of the following functions.

� getValue � �� � � � � � � � � �$� ��� � � � � � � ����� �
getValue � �� �

�8���
�
�
getState �

3 � unit � � stateRead � �� �
�
� � �

READING

VALUES

This function reads the value of an object that is stored in memory. It takes as parameter the address
of the object and returns a computation resulting in the stored value. Parameters % and must satisfy
 �
 datify % . The resulting interleaved computation requires one step for accessing the program
state.

� putValue ���� � � � � � � � � �$� � � � � � � ����� � � � � � � � � ����� �
putValue ���� � �8� �

�
� � � � setState � � stateWrite ���� � � � � � 3 � unit � � stateRead � �� �

�
� � �

WRITING

VALUES

This function writes a value to an object stored in memory. It takes as parameters the address of the
object and the value to be stored. Again, it must be �
 datify % . The result is a computation
which stores the value in the current program state and returns the value that was previously stored in
the object. It requires one step for accessing the program state.

� seqpt � � ��� �
seqpt � lift � � � � setState stateCommit

3 � � � � unit u � �
SEQUENCE

POINTS

This function returns a computation which generates a sequence point. The program state is changed
by applying the function stateCommit . One step is required.

� fullExpression � � �	� � � � �	� �
fullExpression ��� 1 � lift � � � � 1 3 � � � � seqpt

3 � � � � unit � � � �
FULL

EXPRESSIONS

This function converts the interleaved computation, which represents a full expression, to a non-
interleaved computation. A sequence point is generated after the full expression has been evaluated.

11.10 Environments

The domains defined in this section represent various kinds of dynamic environments. Such environ-
ments are either the dynamic equivalent of static environments, or provide information about aspects
of the program that is not included in the program state, such as the meanings of defined functions.

11.10.1 Type environments

Dynamic type environments associate identifiers with their dynamic meanings. Since a static meaning
of an identifier is required to be known before a dynamic meaning can be given, dynamic type envi-
ronments are closely related to static type environment. Given a static type environment � , � � ��� � ! is
the domain of dynamic type environments that are related to � .

11.10. Environments 147

� � � � � � � ��� � � � � � � � � � � � � � � � � ��� � � � � � � ��� � � DEFINITION

Just as static type environments, dynamic type environments are organized in a tree-like structure of
nested scopes. In the first part of the product, each identifier is associated with its dynamic meaning.
Notice the use of the dependent function here. The second part of the product represents the dynamic
environment of the enclosing scope. It is equal to � in the case of the outermost scope.

Given a static type environment � , the dynamic meaning of identifier � is an element of the domain
 � � � � � . This domain is defined as follows:

� � � � � � � � �
isLocal � � � ide � � � � � � � � � � raw ide � 	 �

normal � � � � � � � � � �����	 ��� ����� '
�
� � �

If � is an identifier declared locally in � and does not correspond to a typedef, then its dynamic meaning
is an element of the dynamic domain that corresponds to its static denotable type. Otherwise, it is an
element of the trivial domain � .

The following operations are defined for dynamic type environments.

� � �5� � � � � (��� � � � � � ��� � � � � � � � ��� � �
� � � � ����� ��� � � � � � isLocal � � � ide � � u � ��� � � � � raw ide � 	��

normal � � � � �	 � � ��� � '
�
� � u' (� ��� � #

OPEN SCOPE

This operation creates a dynamic type environment, taking as parameters the related static environ-
ment and the dynamic environment that corresponds to the enclosing scope. Local identifiers that do
not correspond to a typedef are associated with the error value � , reflecting the fact that they rep-
resent objects which have not been given an address yet. This is fixed by the dynamic semantics of
declarations.

� � �5� � � � � (��� � � � � ��� � � � � � � � � ��� � �
� � � � ������� � � � # � � ' (�� �

CLOSE SCOPE

This operation returns the dynamic environment corresponding to the enclosing scope of � .

� create � � � � (� � � � � � � � � � � � � � ��� � � � � � � � � � �
create �8� � � � � � � � ������

createden � � � '�� � �����$� � � � � � � ���$�
createden

� � � � � ��� � � 	��� � createobj
�

newObject � �� � newFunction
createobj � � � '�� � � ����� � � � ��� ��� � � � � � � � � � �����
createobj

� � � � � � � � � � � ��� � � 	��
obj � � $ � � � � � #
array � � ! �� � � � � � � ��� � ��� � ��� � � � createobj

� ! � � �) � � sizeof � � � � �� � � � � # � �
' (�

isLocal � � � ide � � � � ��� � � � � raw ide � 	��
normal � � � � unit

� � � � �
� createden � � � � #	 � � ��� � '
�
� � �

CREATE

OBJECT

148 Chapter 11. Dynamic semantic domains

This function creates the object or function that corresponds with identifier � in the given dynamic
environment. The result is the updated dynamic environment. An error occurs if � is not defined
locally in the environment or if it is a typedef. If the object is an array, all of its elements are created.

� allocate � � � � (� � � � � � ��� � � � � � � � � ��� �
allocate �8� � � � � � � � ������

allocateden � � � '�� � � ���$� � � � � � � ���$� � � ��� �
allocateden

� � � � ��� � � � � � � 	��� � allocateobj
� �� � unit u

allocateobj � � � '�� � � ����� � � � � � � ����� � � ��� �
allocateobj

� � � � � � � � � � � � 	 �
obj � � $ � � setState � � stateAllocateobj � � % � � � � 3 � � � � unit u �
array � � ! �� � � foldln � � ���� + � � ��� � allocateobj

� ! � � � � � � unit u �� � � � � # � �
' (�

isLocal � � � ide � � � � ��� � � � � raw ide � 	��
normal � � � � allocateden � � ��� � �	 � � ��� � '

�
� � �

ALLOCATE

OBJECT

This function allocates the object that corresponds with identifier � in the current program state. The
result is a computation with an unimportant result. An error occurs if � is not defined locally in
the environment or if it is a typedef. If the object is an array, all of its elements are allocated. If �
corresponds to a function, the program state remains unaltered.

� destroy � � � � (� � � � � � ��� � � � ��� � � � ��� �
destroy ��� � � � � � � � ������

destroyden � ��� '���� ������� � � � � � � ����� � � ��� �
destroyden

� � � � � � � � ��� � � 	 �� � destroyobj
� �� � unit u

destroyobj � � � '�� � � ��� � � � � � � � ��� � � � ��� �
destroyobj

� � � � � � � � ��� � � 	��
obj � � $ � � setState � � stateDestroyobj � � % � � � � 3 � � � � unit u �
array � � ! �� � � foldln � � ���� + � � ��� � destroyobj

� ! � � � � � � unit u �� ��� � � # � �
' (�

isLocal � � � ide � � � � ��� � � � � raw ide � 	��
normal � � � � destroyden � � � � � �	 � � ��� � '

�
� � �

DESTROY

OBJECT

This function deallocates the object that corresponds with identifier � from the current program state.
The result is a computation with an unimportant result. An error occurs if � is not defined locally in
the environment or if it is a typedef. If the object is an array, all of its elements are deallocated. If �
corresponds to a function, the program state remains unaltered.

� lookup � � � � (� � � � � � ��� � � � � � ��� � � � � � � � � � � ���
lookup �8� � � strict � � � � � � � ������ � � � � # � �

' (�
isLocal � � � ide � � � � ��� � � � � raw ide � 	��

normal � � � � � � �
	 � � ��� � '

�
� � � �

LOOKUP

11.10. Environments 149

This function returns the dynamic meaning of identifier � in � . An error occurs if � is not defined
locally in the environment or if it is a typedef.

11.10.2 Member environments

Dynamic member environment associate identifiers that are members of structures or unions to their
dynamic meanings. Again, the static member environments must be known. They come in two
flavours. In the first case, the dynamic meanings of members are elements of dynamic data type
domains. In the second, they are elements of dynamic member type domains. Thus, the first case cor-
responds to treating a member as the value that it contains, whereas the second corresponds to treating
it as an l-value.

Given a static member environment � and an identifier � that is declared in � , the dynamic domains
 � � � � � � � ! and ��� � � � ! � ! that are defined below represent the two aforementioned flavours of
dynamic meanings.

� � � � � � � ����� � ��� � � � � � ��� # � � ' (� � � � ��� � 	��
obj � � $ � � � � � � � �����
bitfield � $ �� � � � � datify � � �����	 ��� � ��� '

�
� � �

DEFINITION

� � � � � � � � �$� � ����� � � �	� � � # � � ' (
� ��� � ��� � � � � � � � � � � � �$�

It should be noted that array members can only be given meanings of the second flavour.

The following two functions are used for looking up the dynamic meaning of structure and union LOOKUP

members respectively.
� structMember � ��� � � � � � � � � �� � � ��� � � � �����
� unionMember � ��� � � � � � � � � � � � � � � � � � � �$�

Both functions take as parameters the address of the structure or union object and the identifier of the
member. Their definition is implementation-defined and is omitted here.

11.10.3 Function prototypes

The dynamic domains related to function prototypes. Given a function prototype � , � � � � 7 � ! is the
domain of dynamic values for the actual parameters of functions whose prototype is � .

� � � � � � �
2 � � � � � � � � � � � � � � DEFINITION

For each of the function’s parameter a dynamic meaning is associated. That is, for a given function
prototype � and a given integer number � , � � � � � is the domain of possible dynamic values for the
� -th argument of � . This domain is defined below.

� � � � � � � � ������� � � � � 	�
� # � � ' (
� + � ,� � � � � � � � � � ����� � ��
� � � � �,� � � � � � �

Notice that the presence of ellipsis in function prototypes perplexes the definition of this domain.
The dynamic meaning of actual parameters that fall in the part of the prototype after the ellipsis are
elements of the special domain � � 	 , defined as the coalesced sum of all dynamic data type domains.

150 Chapter 11. Dynamic semantic domains

� � � � � �
�

���������
	��� � � � � � �����

11.10.4 Function code environments

Function code environments associate function identifiers, i.e. elements of domain � + � to the dynamic
meanings of their definitions. The use of pointers to functions in C, combined with type casting,
enforces run-time checking of function types in the semantics of function calls. Thus, the static types
of functions must be included in the dynamic environment.

� � � � 	 � � � ' (� � � '���� � � 1� � � � � � � ����DEFINITION

The definition of function code environments is straightforward. They are functions taking as param-
eter a function identifier. Notice the use of a dependent product in the result. The first part of the
product is the function’s static type and the second part is the dynamic meaning.

The following operations are defined for function code environments.

� � � � � � � 	 � � �)' (��� � � � '���� �	� 1� � � � � � � � 1� �
� � � � � � ��� � � ���� � � unit ��� � � � error

LOOKUP

This operation returns the dynamic meaning of a given function in a given function code environment.
An error occurs if the function is not defined.

� � � �
� � � � � 	 �5� � ' (� � � � '�� � � ���� � � � � � � � �� � � � � � 	 � �
� � � �
��� � � unit � ��� �
��� �

UPDATE

This operation updates the function code environment � by setting the dynamic meaning of function�
� to � . The result if the updated environment.

11.11 Scopes

The modelling of nested scopes in dynamic type environments is not adequate for the developedMOTIVATION

semantics. C allows jumps of various kinds between different and even unrelated scopes. Furthermore,
the standard requires that object allocation and deallocation must take place in jumps between different
scopes. For these reasons, a special treatment of scopes is required in the dynamic semantics of C.

Every scope is identified by an element of domain � 	 � �"�
	 , i.e. an integer number. The topDEFINITION

element of this domain corresponds to the outermost scope. Domain � 	 � � represents information
about scopes and their structure.

� � � 	 � � � � � �
� � � � � 	 � � � � � 	 � � ���5� � � � 	 � � � � � � � 	 � � � � �� � � � 	 � � ��� � � (� �

� � � � 	 � � � � � � � � (��� �
� � � � 	 � � � � � � � � (��� �

11.11. Scopes 151

The first part of the product in � 	 � � is the identifier of the current scope. The second part is a
function mapping each scope identifier to the identifier of the enclosing scope, representing thus the
tree-like structure of scopes. The third part is a function which associates scopes with their static
type environments. Finally, the fourth and fifth parts associate scopes with the actions of creating and
destroying objects, i.e. with the notions of the dynamic meaning of declarations that are made in these
scopes.

The following functions concerning scopes and scope information are useful in the specification
of the semantics for C statements.

� scopeEmpty � � � 	 � �
scopeEmpty � � � � � �(�
� � � � � #

EMPTY SCOPE

An empty scope information contains only the outermost scope. The last two parts are � since the
outermost scope contains no statements and jumps there are not allowed.

� scopeGetId � � � 	 � � � � � 	 � � � �
scopeGetId ��� � � ������� � � � � � � ��� # � � ' (�

GET

IDENTIFIER

This function returns the identifier of the current scope.

� defineBlock � � � 	 � � � � � � (� �� � � � (��� �� � � � (��� � � � � ��� � � � � � � � � � � ��� � � � � � � � 	 � � ��� � � � 	 � � �
defineBlock �8� � � ��� � � � � � � � � � � � � ��� � � � � � � � � � � # � � ' (

unit
� � � � � �
� � � � � �
� � � � � � �
� � � � ��� � �
� ��� � #

DEFINE BLOCK

This function defines a new scope. Its parameters are the identifier for the new scope, its static type en-
vironment, the functions for the creation and destruction of local objects and the structure representing
current scope information. The result is the updated scope information.

� endBlock � � � 	 � � ��� � � � 	 � � �
endBlock ��� � � ������� � � � � � � � � # � � ' (

unit
� � � � � � � � � � � #

END BLOCK

This function leaves the current scope and returns to the enclosing one.

� inScope � � � 	 � � � � � � � � 	 � � ��� � � � � 	 � � ���
inScope �8� � � � � � � � � ��� � � � � � � � � � � # � � ' (� � � � � � � � � � #

IN SCOPE

This polymorphic function sets the current scope to the one identified by its first parameter.

� scopeUse � � � 	 � � � � � � 	 � � ��� � � � � 	 � � ���
scopeUse ��� � � � � � � � ! � � �

USE SCOPE

This polymorphic function is mostly used on elements of domains of type
� � ��	 � and

� � ��	 � , which
have the general form � 	 � � � and are defined in Section 11.12. Viewed under this perspective, it
returns a computation which the scope information given by the first parameter.

152 Chapter 11. Dynamic semantic domains

� scopeGoto � � � 	 � � � � � 	 � � ��� � � � � (� � � � � � ��� � � � � � � ! � � (��� � � � ! � ��� � � �
scopeGoto �8� � � � � � � � � � � ������ � � � � � � � ��� # � �

isAncestor � � � 	 � � ��� � � � 	 � � ��� ��'
isAncestor � � � � fix � � 1 � � � � � � � � � � true � � ��� � � false 1 � � � �	� �
commonAncestor � � � 	 � � ���5� � � 	 � � ��� � � � 	 � � � �
commonAncestor � fix � � 1 � � � � �� # � � isAncestor

� � � � � � isAncestor � � � � � 1 � � � � � � � # �
ascend � � � 	 � � ���5� � � 	 � � � � � � � � (� � � � � � ��� � � � � � � ! � � (� � � � � ! � ��� � � �
ascend � fix � � 1 � � � � �� # � ��� � � � � � � � � � � unit

� � � # 1 � � � � � # � � 3 � � � � ! � ! # ������ � ! ! � � �' (�
� � � ! ! � ! 3 � � � ! ! �

unit
� � ! ! � ! !$# � � �

descend � � � 	 � � ���5� � � 	 � � � � � � � � (� � � � � � � � � � � � � � ! � � (� � � � � ! � � � � � �
descend � fix � � 1 � � � � �� # � ��� � � � � � � � �	� � unit

� � � # � � � � � 3 � � � ! ������ � ! � � � � � � �' (1 � � � � �� # � ! � ! ���� � commonAncestor
� � � #' (

descend
� � � # � � 3 � � � � ! � !�# �

ascend
� � � # � ! � ! �

GO TO SCOPE

This function performs a change in the static and dynamic environments, required when jumping
between different scopes. It takes as parameters the current scope information, an identifier for a
target scope and the current static and dynamic environments; it returns a computation resulting in the
environments corresponding to the target scope. This computation ensures that all objects going out
of scope are destroyed and all objects coming into scope are created. The tree-like structure used in
the scope information is used for this purpose.

� ��� � � � 	 � � ���5� � � � � (� � � � � � ��� � � � � �SCOPES AND

CONTINUA-
TIONS

The domain � represents a continuation that jumps to a different scope. The first part of the product
is the identifier of the scope where the jump is made. The second part is a function which, given a
static and dynamic environment for the scope identified by the first part, returns a continuation.

� makeSC � � � 	 � � � � � � � � � (� � � � � � � � � � � � � � � �
makeSC ��� � � � � ��� � � #

This simple function creates an element of � from its components.

� convertSC � � � 	 � � � � � � � ���
convertSC ��� � � � 	(� makeSC

� � � � � � � ��	 �
This function converts a continuation to an element of � , using the given scope identifier for the
target scope.

11.12. Monads for statement semantics 153

� useContinuation � � � � (� � � � � � ��� � � � � � 	 � � � ��� � � ��� �
useContinuation �8� � � � � � � � � � 	(�	������� � � # � 	 ' (

scopeGoto
� � � � 3 � � � ! � ! � escape � � � ! � ! � �

This function performs a jump using a continuation from a different scope. The current static and
dynamic type environments are passed as parameters, together with the current scope and the contin-
uation that will be used. In its definition, function useContinuation uses function scopeGoto to
change to the proper environment for the target scope and then function escape to perform the jump.
The result is a computation of unimportant result.

11.12 Monads for statement semantics

Two families of monads are defined in this section for representing the dynamic semantics of C state-
ments. These monads are closely related and present many similarities. In brief, the family

�
of

monads represents computations corresponding to the execution of statements, whereas the family
�

of monads is used for the extraction of other useful information concerning the execution of state-
ments.

� � ��� � ��� � � � � 	 � � � ��� � ��� � � � � � � � ����� � ��� � � � ��� � MONAD �

For a given data type , monad
� � is used in the dynamic semantics of statements in the body of a

function whose result type is . Elements of domain
� � ��	 � are functions whose parameters are:

� The current scope information;
� A pair of continuations corresponding to break and continue statements;
� A function mapping possible results of the current function to corresponding continuations.

The result is a computation resulting in 	 . All parameters may be viewed as information that is passed
to the computation.The unit of monad

� � is defined as:
� unit � � � ��� � ��� �

unit � �8� & � � � � � � 	�� 	 � # � � 	�� � unit � &
that is, the given parameters are simply ignored. The bind operator is defined as:
� � 3 � � �	� � �	� �� �	�,�
� � �	
 � � �
� � �	
 �

� 3 � � ��� � � � � 	 � 	 � # � � 	�� � � � � 	 � 	 � # 	��-3 ��� � ��� � � � � 	 � 	 � # 	�� �
which means that the values of the parameters are used throughout the whole computation. It is easy
to see that this monad satisfies the three monad laws.

� 9 �� � ��� � � � � 	 � � � ��� � ��� � � � � � � � ����� � ��� � � ��� � � � � � MONAD �

In a way similar to monad
� � , monad

� � is defined for all data types . Elements of type
� � ��	 � are

functions which take as parameters all the those described above and also the following:
� A continuation corresponding to the statement’s normal completion.

The result is not a computation, but only an element of type 	 . The type � � has been chosen for
the last parameter, instead of just , so that

� � �
 � and
� � � � are the same domain. This is a useful

property that will be used later. The unit of monad
� � is defined as:

154 Chapter 11. Dynamic semantic domains

� unit � ��� ��� � ��� �
unit � ��� & � � � � � � 	 � 	 � # � � 	 � � � � � &

ignoring all parameters, whereas the bind operator is defined as:

� � 3
�
� � � ���	� � � �	�,��� ���	
 � � ��� � �	
 �

9 3
�
� �8� � � � � 	�� 	 � # � � 	��(� ��� � ����� � ��9 � � 	�� 	 � # 	�� � ' ("� � � � 	�� 	 � # 	�� �

Again it is easy to verify that the monad satisfies the three monad laws.

Similarly to the previously defined monads, top elements of monads
� � and

� � represent theERRORS

occurence of errors.

� error � �	� � ��� �
error � ���

� error � � � � ��� �
error � �8�

The following functions are useful for converting between various kinds of monads. PrimitiveLIFTING

functions are lift � ��� and lift
 ��� and all other functions are derived.

� lift � � � � � �	� � � � � �	� �
lift � � � ��� 1 � � � � � � 	 � 	 � # � � 	�� � fullExpression 1

� lift ��� � ��� �	� � �
� � �	� �
lift ��� � � unit �

� lift �	� � � � �	� � �
� � �	� �
lift �	� � � lift � � � � lift � � � � lift ��� � � lift �	�
�

� lift �	� � � � �	� � �
� � �	� �
lift �	� � � lift ��� � � lift �	� �

� lift ��� � ��� �	� � �
� � �	� �
lift ��� � � lift � � � � lift � � � � lift ��� �

� lift � � � � � �	� � �
� � �	� �
lift � � � � lift � � � � lift � � �

The following functions, most of which are polymorphic, define aspects of the execution behaviour
of statements.

11.13. Label environments 155

� result � � � � � (� � � � � � ��� � � � � � � � � ����� �
� � ��� �
result � �8� � � � � � ��� � � � � � � 	 � 	 � # � � 	 � � useContinuation � � � � 	 � � �

FUNCTION

RESULTS

This function terminates execution of the function body by returning the result value given by its third
parameter. The first two parameters are the static and dynamic type environments. The result is a
statement computation of an unimporant result.

� funbody � � � � � � ��� � � � � � � ����� �
funbody �8� � � lift � � � � ��� � ��� � � � # � � convertSC � � � � � � � � � � � � �

This function converts a statement computation representing the body of a function to an expression
computation. The result of the expression computation is the result that is returned by the function
body.

� use � � � �	� � � �	�,�
� � ��� � � � � � ��� �
use �8��9 � � � � � � � � � 	 � 	 � # � � 	�� � � � � � � 9 � � 	 � 	 � # 	�� � � � � 	 � 	 � # 	�� �

COMBINING �
AND �

This polymorphic function is the bridge between monads
� � and

� � . It resembles the bind operator.
The value that is hidden in the monad in the first parameter is applied to the function in the second
parameter and the result is returned.

� follow �	� � �	� � � � � ��� � �
� ���	� �
follow ���79 � � � � � � � � � 	�� 	 � # � � 	��(� ��� � 9 � � 	�� 	 � # 	�� � � � � � � � 	�� 	 � # 	�� � �

This polymorphic function specifies that the statement whose semantics in isolation is defined by the
first parameter is followed, under normal order of execution, by the statement whose semantics is
defined by the second parameter. The result is the updated semantics of the first parameter.

� getBreak � � � � (� � � � � � ��� � � �
� ����� �
getBreak ����� � � � � � � � � � 	 � 	 � # � � 	 � � useContinuation � � � 	 �

BREAK AND

CONTINUE

� getContinue � � � � (� � � � � � � � � � �
� � ��� �
getContinue �8� � � � � � � � � � � 	 � 	 � # � � 	 � � useContinuation � � � 	 �

These functions take as parameters the current static and dynamic type environments and return a
statement computation that corresponds to execution of a break or continue statement respectively.

� setBreak �	� � �	� � �
� � �	� �
setBreak ���79 � � � � � � 	 � 	 � # � � 	 � � ��� � 9 � �

convertSC � scopeGetId
� � � � u � 	 � # 	 � �

� setContinue � � � �	� � �
� ���	� �
setContinue ���79 � � � � � � 	 � 	 � # � � 	�� � ��� � 9 � � 	 � convertSC � scopeGetId

� � � � u � # 	 � �
These polymorphic functions take as parameters the semantics of a statement in isolation and set the
continuation corresponding to the break and continue statements respectively to the continuation under
normal order of execution.

156 Chapter 11. Dynamic semantic domains

11.13 Label environments

An additional type of dynamic environment, related to the semantics of statements, is also required.LABELS

Domain �

 represents label environments which associate label identifiers to continuations. A fixing
process similar to the one used for static type environments in Chapter 6 must be used for label envi-
ronments, since (possibly non-terminating) loops can be defined using labels and the goto statement.
� ��� � � � � � � � � � ��� � � '
The first part of the product is the function for the association of identifiers. The second part is a truth
value which denotes whether the fixing process has started. The following functions are defined for
managing label environments.

� � � � � � �
� � � � � false #

EMPTY

LABELS

This function returns an empty label environment. All label identifiers correspond to non-terminating
continuations and the fixing process has not yet started.

� init-fix-L � � � � �
� � � � � � �
init-fix-L ��� � � ������� � � � � � � # � � ' (�� � � �

� � unit
� � � true # error

INITIALIZE

FIXING

This function initializes the fixing process. An error occurs if this has already been started.

� rec-L � � � � � ��� � � � � � � � � � � � ��� � � � � � �
rec-L �8� � � � � � ����� 9 � � � 3 init-fix-L

' (
mclo � 9 �

FIX LABELS

This function performs the fixing of label environments. It uses the monadic closure operator and it
similar in its definition to operator init-fix for type environments.

� getLabel � � � � � � � � (� � � � � � ��� � � � � � � �
� ����� �
getLabel ��� � � ��� � � � � � � � � � � � � 	�� 	 � # � � 	��(������

getLabelRaw � � � � � � � � � ���
getLabelRaw � � � � � � � ������� � � � � � � # � � ' (� � �

� � � � � � ��� � � � � � �' (
useContinuation � � � � getLabelRaw

� � �

GET LABEL

This function takes as parameters an identifier, the current static and dynamic type environment and
a label environment. It returns a statement computation, corresponding to the continuation associated
with the identifier in the label environment. An error occurs if there is no such label identifier.

� setLabel � ��� � � � � � � (��� � � � � ��� � � ��� ����� � � � � � � ��� � � � � � �
setLabel �8� � � � � � � � � � � � � � � 	�� 	 � # � � 	�� � ��� ������

setLabelRaw � � � � ! � � ����� � ��� � � � � � � � �
setLabelRaw �4� � � � 	 ! � � � � ��� � � � � � � � � # � � ' (� � �

� # � � � � ��� � � � � � � �
� 	 ! � � � � � # �' (
setLabelRaw

� � makeSC � scopeGetId
� � � � � � � ��� � � � � � � � � � � 	 � 	 � # 	 � � � � �

SET LABEL

This function updates the label environment by setting the continuation associated with identifier � to
the value given by

�
� . An error occurs if the label identifier has already been declared and the fixing

process is not under way.

11.13. Label environments 157

Case labels, i.e. constant expressions which follow the case keyword in the body of switch state- CASE LABELS

ments, form one more kind of dynamic environment. However, no fixing process is required here,
since there cannot be any loops caused by this kind of labels. Domain
 � � is used for associating
case labels with continuations. The data type is the type of the controlling expression of the switch
statement.

� � � � � � � � � � � � � ����� � ��� �� ���
The first part of the product is a function mapping the values of constant expressions to the corre-
sponding continuations. The second part is the continuation that corresponds to the default label.

� � � � ��� � � ���
EMPTY CASES

This function returns an empty case label environment. All continuations are set to erroneous values.

� getCase � % ��� � � � � ! � � ����� � � � � (��� � � � � � � � � � � � � ��� � � � ��� �
getCase � % ��� �8� � � ��� � � � � � � � � � � � 	 � 	 � # � � 	 � ������

getCaseRaw � � � � ! � � ����� � � � � ��� � � �
getCaseRaw � � � � � � ����� � � � 	 � # � �' (� � � � ���� � � � � � 	 �	 � getCaseRaw � ' (� 	 ��� � � unit u useContinuation � � � 	

GET CASE

This function takes as parameters the value of the controlling expression, the current static and dy-
namic type environment and a case label environment. It returns a statement computation, correspond-
ing to the continuation associated with the controlling expression in the given case label environment.
A computation doing nothing is returned if the value of the controlling expression does not correspond
to a case label and the default label has not been associated.

� setCase � % ��� � � � � ! � � ����� � � � � � (� � � � � � � � � � �
� � ��� � � � � ��� ��� ��� � � � ��� ��� �
setCase � % � � ����� � ��� � � � � � � � � � 	 � 	 � # � � 	 � � ��� ������

setCaseRaw � � � � ! � � ����� � ��� � � ��� ��� � � � � ���
setCaseRaw �4��� � � 	 ! � � � ������� � � 	 � # � ' (� � � � ��� � � � � � ���
� 	 ! � 	 � # �' (
setCaseRaw � � makeSC � scopeGetId

� � � � � � � � � � � � � � � � � � � 	 � 	 � # 	�� � � �

SET CASE

This function updates the case label environment by setting the continuation associated with the given
case expression to the value given by

�
� . An error occurs if the same case expression has already been

associated.

� setDefault � % ��� � � � � � (��� � � � � � � � � �
� � ��� � � � � � � ��� �
� � � � ��� ��� �
setDefault � % � � ����� � � � � � � � � � 	 � 	 � # � � 	 � � ��� ������

setDefaultRaw � ��� � � ��� ��� � � � � ���
setDefaultRaw �4� 	 !� � � � ����� � � � 	 � # � ' (� 	 � ��� � � � � � 	 !� # �' (
setDefaultRaw � makeSC � scopeGetId

� � � � � � � � � � � � � � � � � � � 	 � 	 � # 	�� � � �

SET DEFAULT

This function updates the case label environment by setting the continuation associated with the default
label to the value given by

�
� . An error occurs if the default label has already been associated.

158 Chapter 11. Dynamic semantic domains

11.14 Auxiliary functions
� shift � � � � � ��� � � � ���

shift ����� � � � � � � � � � �) � �
SHIFT

This polymorphic function shifts function � , whose domain is � , by
�

places to the left. That is, the�
-th element of � becomes the

�
-th element of the resulting function.

� zeroMember � � � � � � � ����� � � ��� �
zeroMemberobj � � % � � ��� �

�
�
fullExpression � putValue ���� obj � � % � � � � zeroValue � � 3 � � � � unit u �

zeroMemberarray � � % � � �8� � � � zeroArray � � � �
zeroMemberbitfield � ��% � % � � �8� �

�
� ����� � � datify ��# � ' (

fullExpression � putValue ���� bitfield � ��% � % � � � � zeroValue � � 3 � � � � unit u �

ZERO MEMBER

This function stores a zero value in the object whose address is specified by its first parameter. It is
used in initializations.

� zeroArray � � � � � � � � � � ����� � � � � � ��� �
zeroArray � ����� � � � � � � �� � � � unit u

zeroMember � � � � � � 3 � � � �
zeroArray � � shift +	� � � � � � + � �

ZERO ARRAY

This function is used in the initialization of array elements that are not explicitly initialized.

� zeroStruct � � � � � ��� �� � � � � � � � ����� � � � ��� �
zeroStruct �

�8���
� � � ������� � �	� � � # � � ' (

foldln � + �� � � ��� � ����� � � �
� � ' (
zeroMember ����� � � � � � � � � unit u �

ZERO

STRUCTURE

This function is used in the initialization of structure members that are not explicitly initialized.

� foldln � � � �,� � � � � � � � � � � ��� � � � � ��� � � � ��� �
foldln � � � � ��� � � �)� � � � � � foldln � �) + � � � � 	-3 � � � � � � � � 	

This function takes as parameters a range � � � over the integer numbers, a function � � � � � � � �
and a computation � � � � � � . The result is the following computation:

� � � � ��� � � � � � � ��� � � � � � ��� � � � � � � � � � ��� � � � � � � � � � ��� � � �	� � � � �
� storeStringLit � � string-literal � � � ��� � � � � ��� � � ��� �
� storeWideStringLit � � string-literal � � � ��� � � � � � � � � ��� �
These two functions store the string literal (normal or wide) given by the first parameter to the memory
locations that are given by the second parameter. The third parameter is the size of the character array
that will hold the string literal. Type � is the type of the array’s element. The result is a computation
with an unimportant result.

Chapter 12

Dynamic semantics of expressions

This chapter defines the dynamic semantics of C expressions. Section 12.1 contains an introduction to CHAPTER

OVERVIEWthe dynamic semantic functions and equations for expressions. The definition of semantics starts with
the semantics of primary expressions in Section 12.2 and ends with the semantics of implicit coercions
in Section 12.9.

12.1 Dynamic semantic functions and equations

In general, a dynamic semantic function maps well typed program phrases to dynamic semantic do- SEMANTIC

FUNCTIONSmains. A program phrase is well typed if there exists a typing derivation for it. The conclusion of
this typing derivation specifies the phrase type, which is used to determine which dynamic semantic
function is used. Thus, the definition of dynamic semantic functions follows not only the abstract
syntax of C, but also the language’s typing semantics.

Consider a non-terminal symbol nt which produces phrases that can be attributed the phrase type
� . The dynamic semantics of a program phrase � defined by this non-terminal symbol, with respect
to type � , is denoted by � � ��� . In this, it is assumed that a typing derivation exists, concluding in
the judgement � � � � � for some environment � . This environment is usually a parameter of the
dynamic semantic function.

In general, program phrases that can be attributed a given phrase type � may be produced by
different non-terminal symbols. For this reason, in the rest of Part IV, a line of the form �� � � � 	
specifies that domain 	 is used to represent the dynamic semantic meaning of program phrases that
can be attributed phrase type � .

Dynamic semantic equations are based on typing rules. Consider for example a rule of the form: SEMANTIC

EQUATIONS� � � � �

�
���� � � � (R)

Then, a dynamic semantic equation corresponding to this rule has the form:

(R) � � � � ��� � (expression which can use the dynamic semantics of phrases present in �
�
)

In the case of an equation corresponding to many typing rules sharing a common form, the common
form of the rules is written first followed by the numbers of the typing rules. The equation is written
next.

160 Chapter 12. Dynamic semantics of expressions

As in the case of static semantic meanings, it is possible to have more than one dynamic semanticMULTIPLE

DYNAMIC

MEANINGS
meanings for a given program phrase and phrase type. These meanings correspond to different aspects
of execution. The multiple meanings are distinguished by prepending caligraphic letters, as in � � � ��� .
The functions corresponding to each of the multiple meanings are defined separately.

The dynamic semantic meaning of expressions is typically a function returning an expressionDYNAMIC

MEANING OF

EXPRESSIONS
computation. The dynamic semantic functions for program phrases that can be attributed expression
phrase types are given below.

� � � val � � � � � � � � � (� ��� � � � � � � ����� �
� � � lvalue � � � � � � � � � (��� � � � � ��� � � � � 	 � ��� � � � � � � ����� �
� � � exp � & � � � � � � � (��� � � � � � � � � � � 	 � ��� � � � & � � &��(' �
The meaning of a constant expression of type val � is a function from the static type environment
to an element of domain � � � � � � � ! � . It cannot access any of the dynamic environments, nor the pro-
gram state. The meanings of non-constant expressions also take the dynamic type environment and
the function code enviroment as parameters and return interleaved computations that can affect the
program state.

� � � arg � ��� � � � � � � (� � � � � � ��� � � � � 	 � � � � � � � � � �
2 � � �DYNAMIC

MEANING OF

ARGUMENTS

The dynamic semantic function for the non-terminal symbol arguments, with respect to the phrase type
arg � � , is a function taking as parameters the static and dynamic type environments and the function
code environment and returning an interleaved computation of the arguments’ dynamic values. The
program state can be affected.

� � � � exp � � ! � � � exp � � � � � � � (� � � � � � � � � � � � 	 � ��� � � � � � � ����� �CONVERSION

AS IF BY

ASSIGNMENT

The alternative dynamic semantic function � corresponds to assignability typing judgements of the
form � � � � . Its type is similar to the normal meaning for expressions, with respect to the
phrase type exp � .
� � � � constant � � � � � � � � � �����CONSTANTS

This function specifies the dynamic meaning of constants of type . Its complete definition is omitted
in this thesis.

Provided that ����� � val � and isIntegral � � , it is possible to define an alternative dynamicCONSTANT

EXPRESSIONS semantic meaning for constant integral expressions as follows:

� � � � � constant-expression � � � � (� � � � � �
� � � � � � � ��� � � lift ��� � � � � � � � val � � � � �

This meaning has been used in Part II and Part III of this thesis.

12.2. Primary expressions 161

12.2 Primary expressions
. . .� � � � val � � � (Rules: E1, E2 and E3) FLOATING

CONSTANTS

� � � � � � val � � � �8��� � unit
� � � � � � �

The dynamic meaning of floating constants is simply their value.

. . .� � � � val � � � (Rules: E4, E5, E6, E7 and E8) INTEGER

CONSTANTS

� � � � � � val � � � ��� � � unit
� � � � � � �

Similarly with integer constants.

. . .� � 	 � val � � � (Rules: E9 and E10) CHARACTER

CONSTANTS

� � � 	 � � val � � � �8� � � unit
� � � 	 � � �

Similarly with character constants.

(E11) � � � � � lvalue � array � obj � char % noqual � % � � � �8� � � � � � � � ������ � � � fromAddrarray � obj � char % noqual � % � � �
newObjectarray � obj � char % noqual ��% � � � #' (

lift � � � � storeStringLit obj � char % noqual � � � � � � 3 � � � � unit
� � �

(E12) � � � � � lvalue � array � obj � wchar t % noqual � % � � � ��� � � � � � � � ������ � � � fromAddrarray � obj � wchar t % noqual ��% � � �
newObject array � obj � wchar t % noqual � % � � � #' (

lift � � � � storeWideStringLit obj � wchar t % noqual � � � � � � 3 � � � � unit
� � �

STRING

LITERALS

The dynamic meaning of string literals is a computation resulting in their address in memory. The
computation affects the program state by storing the string literals in memory.

(E13) � � � � � lvalue � � � ��� � � � � � � � � lift ��� � � lookup � � � �
(E14) � � � � � exp � � � ����� � � � � � � � lift ��� � � lookup � � � �
(E15) � � � � � val � int � ����� � unit �

IDENTIFIERS

The dynamic meaning of identifiers designating objects or functions is their associated value in the
dynamic type environment. In the case of enumeration constants, it is just their value.

12.3 Postfix operators

(E16) � � � � [� �] � � lvalue � � � � � � *(� � + � �) � � lvalue � � � ARRAY

SUBSCRIPTS

The dynamic meaning of array subscripts is indirectly specified, as suggested in the standard, by
means of the indirection operator and pointer arithmetic.

162 Chapter 12. Dynamic semantics of expressions

(E17) � � � (arguments) � � exp � � � ����� � � � � � � �
� � � � � exp � ptr � func � � % . � � � � � � � � � � arguments � � arg � . � � � � 3 � � � � � � � # �� � � � � � 	 �

inl � � � seqpt
3 � � � �

lift ��� � � � � � � 3 � � � � � � # �
isCompatible � � func � � �� � � � � � � � error � �	 � � ��� � '

�
� � error �

FUNCTION

CALLS

The function pointer and the actual arguments are first evaluated and their interleaving is allowed. If
the function pointer is not null, a sequence point is generated and the function is called with the given
actual arguments. An error occurs if the type of the pointed function is not compatible with the type
of the function pointer that was used to access it.

(R1) � � � � � arg � .�� � �8� � � � � � � � � unit �
(R2) � � � � � arg � . � �8� � � � � � � � � unit �
(R3) � � � , arguments � � arg � . � � �8� � � � � � � � �� � � � � � exp � � � � � � � � � � arguments � � arg � . � � � � 3 � � � � � � # �

unit � shift � � + � � � � � +
� � � �
(R4) � � � , arguments � � arg � . � � �8� � � � � � � � �� � � � � � exp � � � � � � 3 � unit � cast ���� � � � � � � � � arguments � � arg � . � � � � 3 � � � � � � # �

unit � shift � � + � � � � � +
� � � �
The dynamic meaning of actual arguments performs their interleaved evaluation. If the type of the
corresponding formal argument is known, then an actual parameter is converted as if by assignment
to the type of the formal argument. Otherwise, in the case of parameters passed in the ellipsis part of
a prototype, the default argument promotions are performed.

(E18) � � � . � � � lvalue � � � � ����� � � � � � � � � � � � � lvalue � obj � struct � � % � ��%�� � � � � � 3 � � ���
unit � structMember �

� � � �
(E19) � � � . � � � exp � � � ����� � � � � � � � � � � � � exp � struct � � % � � � � � � 3 � ��� � � � unit � � � � � � �
(E20) � � � . � � � lvalue � � � � ����� � � � � � � � � � � � � lvalue � obj � union � � % � ��%�� � � � � � 3 � � ���

unit � unionMember �

� � � �
(E21) � � � . � � � exp � � � ����� � � � � � � � � � � � � exp � struct � � % � � � � � � 3 � ��� � � � unit � � � � � � �

MEMBER

OPERATORS

The dynamic meaning of the dot operator is relatively simple. The address of the member or its stored
value can easily be found.

(E22) � � � -> � � � lvalue � � � � ����� � � � � � � � � � � � � exp � ptr � obj � struct � � % � � %�� � � � � � � 3 � � � � �
� � � � � � 	��

inl
� � unit � structMember �

� � �	 � � ��� � '
�
� � error �

(E23) � � � -> � � � lvalue � � � � ����� � � � � � � � � � � � � exp � ptr � obj � union � � % � ��%�� � � � � � � 3 � � � � �
� � � � � � 	��

inl
� � unit � unionMember �

� � �	 � � ��� � '
�
� � error �

The dynamic meaning of the arrow operator is a little more complicated. In case of a null pointer, an
error must be generated.

12.4. Unary operators 163

12.4 Unary operators
� ��� � lvalue � � � . . .

� � � datify
�

��� op � � exp � � � (Rules: E24, E25, E26 and E27) UNARY

ASSIGNMENTS

� � � op � � � exp � � � ��� � � � � � � � �
� � � � � lvalue � � � � � � 3 � � � � �
getValue � �� �

�
�
3 � ��� �������� � ! & # � � � op � � � � ' (

putValue ���� � � � � ! 3 � � � � unit & � � �
The l-value is first evaluated. The stored value is retrieved from memory and the required operation is
performed. Then the updated value is stored in memory and the result is returned.

The dynamic semantic function for unary assignment operators is defined as follows, using the
semantics of addition and subtraction. It is parameterized by the data type of the operand.

� � � unary-assignment � � � � � � � � � ����� � � � � � � ����� � � � � � � �����
� � ++ � prefix �"� � � �8� � � ����� � ! � � � + � � � % � % � � � � � � 1 � � � # ' (� � ! � ! #
� � ++ � postfix � � � � �8��� � ����� � ! � � � + � � � % � % � � � � � � 1 � � � # ' (� � ! � #
� � -- � prefix �"� � � �8� � � ����� � ! � � � - � � � % � % � � � � � � 1 � � � # ' (� � ! � ! #
� � -- � postfix � � � � �8��� � ����� � ! � � � - � � � % � % � � � � � � 1 � � � # ' (� � ! � #

The parameter of these functions is the initial value and the result is the pair of the updated value and
the returned value. In the case of postfix unary assignment operators, the returned value is the initial
value. In the case of prefix unary assignment operators, the returned value is the updated value.

(E28) � � & � � � exp � ptr � � � � ��� � � � � � � � � � � � � � lvalue � � � � � � 3 � unit � inl � toAddr � �
(E29) � � & � � � exp � ptr � � � � ����� � � � � � � � � � � � � exp � � � � � � 3 � unit � inl �

ADDRESS

OPERATOR

The dynamic semantics of the address operator is simple. A null pointer can never be obtained.

(E30) � � * � � � lvalue � � � ��� � � � � � � � � � � � � � exp � ptr � � � � � � � 3 � � � � �
� ��� � � � 	��

inl
� � unit

�
	 � � ��� � '

�
� � error �

(E31) � � * � � � exp � � � ����� � � � � � � � � � � � � exp � ptr � � � � � � � 3 � � � � �� ��� � � � 	��

inl � � � unit � �	 � � ��� � '
�
� � error �

INDIRECTION

OPERATOR

In the dynamic meaning of the indirection operator, a check for null pointers is performed. An error
occurs if a null pointer is dereferenced.

The dynamic semantic function for unary operators is defined below, parameterized by the data UNARY

OPERATORStype of the operand. The complete definition of this function is omitted in this thesis.

� � � unary-operator � � � � � � � � � ����� � � � � � � �����

The following equations define the dynamic meanings of expressions using arithmetic unary op-
erators.

164 Chapter 12. Dynamic semantics of expressions

����� � val � � � . . .��� op � � val � � ! � (Rules: E32, E34 and E36)

� � � op � � � val � ��� � ��� � � � � � � � val � � � � 3 � unit � � � op � � ��� � cast ���� ��� �
����� � exp � � � . . .��� op � � exp � � ! � (Rules: E33, E35 and E37)

� � � op � � � exp � ��� � �8� � � � � � � � � � � � � � exp � � � � � � 3 � unit � � � op � � ��� � cast ���� ��� �
The dynamic meaning of expressions using the unary plus, minus or bitwise negation operators are
simple.

(E38) � � ! � � � � � � � � == � � � �

Logical negation is defined in terms of equality to zero, as suggested in the standard.

(E39) � � sizeof � � � val � size t � ����� � unit sizeof � � �
(E41) � � sizeof � � � val � size t � ����� � unit sizeof � � �
(E42) � � sizeof(�) � � val � size t � ��� � � unit sizeof � � �

SIZEOF

OPERATOR

The dynamic meaning of the sizeof operator is also very simple.

12.5 Cast operators

(E43) � � (�) � � � exp � void � �8� � � � � � � � � � � � � � exp � � � � � � 3 � � � � unit u �
In the case of casting to void, the value of an expression is simply discarded.

(E44) � � (�) � � � val � � � � ����� � � � � � � val � � � � 3 � unit � cast ���� � � �
(E45) � � (�) � � � exp � ��� � �8� � � � � � � � � � � � � � exp � � � � � � 3 � unit � cast ���� ��� �
Otherwise, a type casting is performed.

12.6 Binary operators

Three dynamic meanings for binary operators are defined. The primary meaning of a binary operatorMEANINGS OF

BINARY

OPERATORS
is a function taking two parameters of types � and 	 and returning a result of type . All data types
are given as parameters. The complete definition of this function is omitted in this thesis.

� � � binary-operator � � ��� % ��� % � � � � � � � � ����� � � � � � � � ����� � � � � � � �����

The second alternative dynamic meaning for binary operators models their application on constant
values. The parameters � and 	 specify the data types of the two operands before conversion. The
parameters �� and �	 specify the types after the necessary conversions have taken place. Finally, the
parameter specifies the data type of the result.

12.6. Binary operators 165

� � � � binary-operator � � � � % ��� % � �� % � �� % � ��� � � � � � � � ����� �� � � � � � � � � ����� � ��� � � � � � � ����� �
� � � op � � � � % � � % � �� % � �� % � �8� � & � & � # �& �"3 � unit � cast ��� �� � �� � 3 � � � � �& �&3 � unit � cast ��� �� � �� � 3 � � � � �

unit � � � op � � � �� % � �� % � � � � � � # � � �
The definition of this meaning is simple and uniform for all binary operators.

The third alternative dynamic meaning for binary operators models their application on non-
constant values, i.e. expression computations. The purpose of the parameters was explained above.

� � � � binary-operator � � � � % ��� % � �� % � �� % � � � � � � � � � � ����� � ��� � � � � � � � ����� � ��� � � � � � � ����� �
Notice that the definition of this meaning is not uniform for all binary operators.

� � � && � � � � % ��� % � �� % � �� % � �8� � 1 � 1 � # �1 � 3 � unit � cast ��� �� � �� � 3 � � � � � seqpt
3 � � � � checkBoolean � �� � � � � �1 �&3 � unit � cast ��� �� � �� � 3 � � � � � checkBoolean � �� � � � � � unit

� � � 1 � � � unit
� � � 0 � � ���

unit
� � � 0 � � � � �

� � � || � � � � % ��� % � �� % � �� % � �8� � 1 � 1 � # �1 � 3 � unit � cast ��� �� � �� � 3 � � � � � seqpt
3 � � � � checkBoolean � �� � � � � �

unit
� � � 1 � � � 1 �&3 � unit � cast ��� �� � �� � 3 � � � � � checkBoolean � �� � � � � � unit

� � � 1 � � � unit
� � � 0 � � ��� � �

In the case of the logical binary operators, the left operand is evaluated first and a sequence point is
generated. If the final result has not been determined, the second operand is also evaluted. The result
of the expression is one of the integer values � or

�
.

� � � , � � � � % ��� % � �� % � �� % � �8� � 1 � 1 � # �1 �"3 � unit � cast ��� �� � �� � 3 � � � �+� seqpt
3 � � � �1 � 3 � unit � cast ��� �� � �� � � �

In the case of the comma operator, the left operand is first evaluated, its value is discarded and a
sequence point is generated. Then, the second operand is evaluated and its result is the result of the
whole expression.

� � � op � � � � % ��� % � �� % � �� % � �8� � 1 � 1 � # ������ 1 ! � � 1 �"3 � unit � cast ��� �� � �� �1 !� � 1 � 3 � unit � cast ��� �� � �� �' (1 ! � � � 1 !� 3 � unit � � � op � � � �� % � �� % � �
Finally, in the case of all other operators, the evaluation of the two operands is interleaved.

The following equations define the dynamic semantics that correspond to various typing rules for DYNAMIC

EQUATIONSexpressions with binary operators.

� ��� � � val � � � � � ��� � � val � � � � . . .� ��� � op �
� � val � � ! �

(Rules: E46, E48, E50, E52, E56, E90, E92 and
E94)

� � � � � op �
� � � val � � � � ����� � � � � op � � ��� % ��� % � � % � � % � � � � � � � � � val � � � � � "� � � � � � val � ��� � � #

166 Chapter 12. Dynamic semantics of expressions

����� � � val � � � � ����� � � val � � � � . . .
� !� � � intPromote

� � � !� � � intPromote
� �

����� � op �
� � val � � !� �

(Rules:
E60 and
E62)

� � � � � op �
� � � val � � �� � ����� � � � � op � � � � % ��� % � �� % � �� % � �� � � � � � � � val � � � � � � � � � � � val � ��� � � #

����� � � val � � � � ����� � � val � � � � . . .
� ! � � arithConv

� � � � � #����� � op �
� � val � int �

(Rules: E64, E67, E70,
E73, E76 and E83)

� � � � � op �
� � � val � int � �8� � � � � � op � � � � % ��� % ��� % ��� % int

� � � � � � � val � � � � � � � � � � � val � ��� � � #
����� � � val � � � � ����� � � val � � � � . . .����� � op �

� � val � int � (Rules: E96 and E99)

� � � � � op �
� � � val � int � �8� � � � � � op � � � � % ��� % � � % ��� % int

� � � � � � � val � � � � � "� � � � � � val � ��� � � #

����� � � exp � � � � ����� � � exp � � � � . . .����� � op �
� � exp � � ! �

(Rules: E47, E49, E51,
E53, E57, E91, E93 and
E95)

� � � � � op �
� � � exp � � � � �8� � � � � � � � � � � � op � � � � % ��� % � � % � � % � � � � � � � � � exp � � � � � � � � � � � � � exp � ��� � � � � #

����� � � exp � � � � ����� � � exp � � � � . . .
� !� � � intPromote

� � � !� � � intPromote
� �

����� � op �
� � exp � � !� �

(Rules:
E61 and
E63)

� � � � � op �
� � � exp � � �� � ����� � � � � � � � � � � op � � � � % ��� % � �� % � �� % � �� � � � � � � � exp � � � � � � � � � � � � � exp � ��� � � � � #

����� � � exp � � � � ����� � � exp � � � � . . .
� ! � � arithConv

� � � � � #����� � op �
� � exp � int �

(Rules: E65, E68, E71,
E74, E77 and E84)

� � � � � op �
� � � exp � int � �8� � � � � � � � � � � � op � � � � % � � % � � % � � % int

� � � � � � � exp � � � � � � �� � � � � � � exp � ��� � � � � #

����� � � exp � � � � ����� � � exp � � � � . . .����� � op �
� � exp � � ! �

(Rules: E54, E55, E58, E59, E66, E69,
E72, E75, E78, E79, E80, E85, E86,
E87, E98, E101 and E115)

� � � � � op �
� � � exp � ��� � �8� � � � � � � � � � � � op � � � � % ��� % � � % ��� % ��� � � � � � � � exp � � � � � � �� � � � � � � exp � ��� � � � � #

In the case of arithmetic or simple pointer operations, the only thing to determine from the typing rules
above are the parameters for the various data types.

(E97) � � � � && � � � � val � int � ����� � � � � � � � val � � � � � 3 � � � � � � checkBoolean ��� � � � � � unit
� � � 0 � � � error �

(E100) � � � � || � � � � val � int � ����� � � � � � � � val � � � � � 3 � � � � � checkBoolean ��� � � � � � unit
� � � 1 � � � error �

These two equations define the short-circuit semantics of the logical boolean operators for constant
values.

12.7. Conditional operator 167

(E81) � � � � == � � � � exp � int � ��� � � � � � � � �
� � � � � � exp � ptr � � � � � � � � 3 � � � � checkBooleanptr � � � � � � � � unit

� � � 0 � � int unit
� � � 1 � � int �

(E82) � � � � == � � � � exp � int � ��� � � � � � � � �
� � � � � � exp � ptr � � � � � � � � 3 � � � � checkBooleanptr � � � � � � � � unit

� � � 0 � � int unit
� � � 1 � � int �

(E88) � � � � != � � � � exp � int � ��� � � � � � � � �
� � � � � � exp � ptr � � � � � � � � 3 � � � � checkBooleanptr � � � � � � � � unit

� � � 1 � � int unit
� � � 0 � � int �

(E89) � � � � != � � � � exp � int � ��� � � � � � � � �
� � � � � � exp � ptr � � � � � � � � 3 � � � � checkBooleanptr � � � � � � � � unit

� � � 1 � � int unit
� � � 0 � � int �

These four equations define the semantics of pointer comparison when one of the operands is the null
pointer constant.

12.7 Conditional operator

The dynamic meaning of the conditional operator is a function taking as its first parameter the con-
trolling expression and as its second parameter the pair of alternative expressions. All parameters are
interleaved computations, and so is the result. It is parameterized by the data types of the controlling
expression, the alternatives and the result.

� cond � % ��� % ��� % � � � � � � � � � � ����� � � � � � � � � � � ����� �� � � � � � � � � ����� � � � � � � � ! � � ����� �
cond � % ��� % ��� % ��� �8� 1 � � � 1 � 1 � # �1 3 � ��� � seqpt

3 � � � � checkBoolean � � � � � 1 �"3 � unit � cast ��� �� ��� � 1 �&3 � unit � cast � � �� ��� � � �
The controlling expression is first evaluated and a sequence point is generated. Then, depending on
the value of the controlling expression, one of the alternatives is evaluated and the result is returned,
after a cast to the appropriate type.

(E102) � � � ? � � : � � � � val � ��� � �8� � �
� � � � � val � � � � 3 � ��� � checkBoolean � � � � � � � � � � � val � � � � � 3 � unit � cast ��� �� ��� � error �

(E103) � � � ? � � : � � � � val � ��� � �8� � �
� � � � � val � � � � 3 � ��� � � checkBoolean � � � � � � � � � � � val � ��� � � 3 � unit � cast � � �� ��� � error �

These equations define the short-circuit semantics of the conditional operator in the case of constant
values.

� ��� � exp � � � ����� � � exp � � � � ����� � � exp � � � � . . .����� ? � � : � � � exp � � ! �
(Rules: E104, E105, E106,
E107, E108, E111 and E112)

� � � � ? � � : � � � � exp � ��� � �8� � � � � � � � �
cond � % ��� % ��� % ��� � � � � � � exp � � � � � ��� � � � � � � � exp � � � � � � �� � � � � � � exp � ��� � � � � #

In case of all sorts of alternatives except null pointers, the only things to determine from the typing
rules are the type parameters.

(E109) � � � ? � � : � � � � exp � ptr � � � � � ��� � � � � � � � �
cond � % ptr � � � ��% ptr � � � � % ptr � � � � � � � � � � exp � � � � � � � � � � � � � � exp � � � � � � � unit � inr u � #

(E110) � � � ? � � : � � � � exp � ptr � � � � � ��� � � � � � � � �
cond � % ptr � � � ��% ptr � � � � % ptr � � � � � � � � � � exp � � � � � � � �

unit � inr u � "� � � � � � exp � ��� � � � � #
When one of the alternatives is a null pointer, it is implicitly converted to the type of the other alterna-
tive.

168 Chapter 12. Dynamic semantics of expressions

12.8 Assignment operators

(E113) � � � � = � � � � exp � � � �8� � � � � � � � � � � = � � � % � � � � � � � � lvalue � � � � � �� � � � � � � � exp � � � � � � #SIMPLE

ASSIGNMENT

The dynamic semantics of simple assignment is straightforward. It is defined in terms of the meaning
of the simple assignment operator. This meaning is a function, taking as parameters the two expres-
sions corresponding to the l-value and the r-value. It is parameterized by the member type % of the
l-value and the data type of the r-value, which is the same as the type of the result. It is required that
 �
 datify % .

� � � = � � � % � � � � � � � � � ����� ���� � � � � � � ����� � ��� � � � � � � ����� �
� � = � � � % � ��� � 1 � 1 � # �1 � � � 1 �&3 � � � �

� � # �
putValue ���� � � � � 3 � � � ! �
unit � � �

The l-value and the r-value are evaluated, allowing interleaving. Then, the evaluated value is stored in
the evaluated location. The result is the stored value.

The definition of composite assignment is probably the most complicated part of the dynamicCOMPOSITE

ASSIGNMENT semantics of C expressions. The reason is that the left side of the assignment must only be evaluated
once. For this reason, typing rule E114 cannot be used directly. A typing derivation with more levels
must be used instead. This derivation has the general form:

����� � � lvalue � � � . . .

����� � � lvalue � � � . . .� � � � � exp � ��� � � ��� � � exp � ��� � . . .� ��� � op �
� � exp � � ! � . . .����� � op �

� � �
����� � = � � op �

� � exp � � ������ � op= �
� � exp � � �

where:

� The implicit coercion rule at the fifth (higher) level is one of C1 or C3;
� The arithmetic operation rule at the fourth level is one of E47, E49, E51, E53, E54, E57, E58,

E61, E63, E91, E93 or E95;
� The assignability rule at the third level is one of A1, A2, A3, A4 or A5;
� The rule at the second level is E113; and
� The rule at the first level is E114.

The dynamic semantic equation that corresponds to this derivation is the following:

(E114) � � � � op= �
� � � exp � � � ����� � � � � � � � � � op= � � � % � % � � % ��� % ��� % ��� � � � � � � � lvalue � � � � � �� � � � � � � exp � ��� � � � � #

The dynamic semantic meaning of composite binary assignment operators is a function similar toMEANING OF

BINARY

ASSIGNMENT
the one for the simple assignment operator. However, the number of parameters is larger.

12.9. Implicit coercions 169

� � � binary-assignment � � � % � � % � � % � �� % � �� % � � � � � � � � � ����� � � � � � � � � � � ����� � ��� � � � � � � ����� �
� � op= � � � % � � % ��� % � �� % � �� % � ��� � 1 � 1 � # ������ 1 ! � � 1 �"3 � ��� � �

getValue � �� ���
�
�
3 � � � �

unit
� �
� cast ��� �� � �� � # � �1 !� � 1 �&3 � unit � cast ��� �� � �� �' (1 ! � � � 1 !� 3 � � � � �

� � � # � � # ������ � � cast ���� ��� � � � op � � � �� % � �� % � � � � � � # �' (
putValue � � �� � � � � 3 � � � ! � unit � � �

The l-value expression, the contents stored there and the r-value expression are evaluated allowing
interleaving. Then, the result is calculated and stored in memory.

An alternative dynamic semantic meaning for expressions of type exp � � is defined, correspond- CONVERSION

AS IF BY

ASSIGNMENT
ing to assignability typing rules.

� ��� � exp � � � . . .������� � ! (Rules: A1, A2, A3, A4 and A5)

� � � � � � � exp � ��� � ����� � � � � � � � � � � � � exp � � � � � � 3 � unit � cast ���� ��� �
In all cases except null pointer constants, a simple type casting is necessary to convert the expression’s
value.

(A6) � � � � � � exp � ptr � � � � � �8� � � � � � � � � unit � inr u �
The case of null pointer constants is even simpler.

12.9 Implicit coercions

(C1) � � � � � exp � � � ��� � � � � � � � � � � � � � lvalue � obj � � %�� � � � � � 3 getValueobj � � % � � �� �

(C3) � � � � � exp � � � ��� � � � � � � � � � � � � � lvalue � bitfield � ��%�� % � � � � � � 3 getValuebitfield � � % � % � � �� �

Implicit coercion from a given object or bit-field designator requires the reading of the contents of the
given object or bit-field.

(C2) � � � � � exp � ptr � � � � ��� � � � � � � � � � � � � � lvalue � array � � % � � � � � � 3 � unit � inl � toAddrarray � � % � � �
(C4) � � � � � exp � ptr � � � � ����� � � � � � � � � � � � � exp � � � � � � 3 � unit � inl �
Implicit coercion from arrays or functions to pointers is simple. It can never produce a null pointer.

(C5) � � � � � exp � � � ��� � � � � � � � � lift ��� � � � � � � � val � � � � �
Finally, implicit coercion from a constant value to a non constant value requires a simple lifting be-
tween monads � and � .

Chapter 13

Dynamic semantics of declarations

This chapter defines the dynamic semantics of C declarations, including external declarations and CHAPTER

OVERVIEWtranslation units. A large number of alternative dynamic meanings are given to declarations, repre-
senting different aspects of their execution behaviour. Section 13.1 presents the semantics of external
declarations and Section 13.2 the semantics of declarations.

13.1 External declarations
� � � tunit � � � � � � � int � � ����� �
(X1) � � external-declaration-list � � tunit

�
lift �	��� � rec ��� external-declaration-list �� �	� � 3 � � � �
� � external-declaration-list � � xdecl

� � � � � � 3 � � � �
lift ��� � � mfix � � � � � external-declaration-list � � � � � � 3 � � � �� � � external-declaration-list � � � � � 3 � � � �
lift �	� � � � “main” ide � 3 � � , � � � � � , 	��

normal � func � int �� � ��� � lift ��� � � lookup � � “main” � 3 � ��� � �
lift ��� � ��� � � � � � 3 � � � �

� � � # �
isCompatible � � � func � int $� � � � � lift � � � � � � � �� error � �	 � � ��� � '

�
� � error � � � � �

TRANSLATION

UNITS

The dynamic meaning of translation units is a computation resulting in the value of type int that
is returned from function main. The static type environment is first calculated and the objects of the
outermost scope are created and allocated. Following that, the function code environment is calculated
as the monadic least fixed point of the � -meaning for all external declarations. The fixed point is
necessary so that recursive function calls are allowed. Following that, objects of the outermost scope
are initialized and function main is called. It is assumed that main has the type “int main ();”
and for this reason no actual parameters are passed. An error occurs if no main function has been
defined or if its type is not compatible with “int main ();”.

� � � xdecl � � � � � � (� � � � � � ��� � � � � � � � � � ��� � � �
(X2) � � external-declaration external-declaration-list � � xdecl

����� �
� � external-declaration � � xdecl

� * � � external-declaration-list � � xdecl
�

(X3) � � declaration � � xdecl
����� � � � �

lift ��� � � � � declaration � � decl
� � � 3 � � � ! � � � � declaration � � decl

� � ! 3 � � � � unit
� ! � �

(X4) � � declaration-specifiers declarator � declaration-list statement-list
� � �xdecl

�8� � � � � �
lift ��� � � � � declarator � � dtor � func � � % . � � � � �

EXTERNAL

DECLARA-
TIONS

The primary dynamic meaning for external declarations is a function that updates the dynamic type
environment. In the case of object declarations, the objects must be created and allocated, whereas in

172 Chapter 13. Dynamic semantics of declarations

the case of function declarations, functions need only be created.

� � � � xdecl � � � � � � (� � � � � � ��� � � � � 	 � � � ��� �
(X2)

� � � external-declaration external-declaration-list � � xdecl
��� � � � � � � � �� � � external-declaration � � xdecl

� � � 3 � � � � � � � external-declaration-list � � xdecl
� � � �

(X3)
� � � declaration � � xdecl

� � � � declaration � � decl

(X4)
� � � declaration-specifiers declarator � declaration-list statement-list

� � �xdecl
�8� � � � � � � � � unit � � �

EXTERNAL

DECLARA-
TIONS�

-MEANING

The � -meaning for external declarations is useful for the initialization of objects of the outermost
scope. In the case of function definitions, no initialization is necessary, because of deviation D-5 in
Section 2.3. This would not be true if static objects were supported inside function bodies.

� � � � xdecl � � � � � � (��� � � � � � � � � � � 	 � � � � � 	 � �
(X2)

� � � external-declaration external-declaration-list � � xdecl
��� � � � � � � � �� � � external-declaration � � xdecl

� � * � � � external-declaration-list � � xdecl
� �

(X3)
� � � declaration � � xdecl

��� � � � � � � � � unit �

EXTERNAL

DECLARA-
TIONS�

-MEANING

The � -meaning for external declarations is used for the definition of functions. It is a function which
takes as parameters the current static and dynamic type environment and the current function code
environment and returns an updated function code environment.

(X4)
� � � declaration-specifiers declarator � declaration-list statement-list

� � �xdecl
����� � � � � � � �

lift �	�
� � rec ��� ��� declarator �� * ��� declaration-list �� � � � � � � 3 � � � ! �� � � declarator � � dtor � func � � % . � � � � 3 � � � � ������ � � �4��� � � funbody �
lift � � � ���
 � � declarator � � dtor � func � � % . � � � ! � � ! � � � � � � 3 � � � ! �
lift ��� � � defineBlock

� � !� � ��� � � � � � lift ��� � � � � declaration-list � � decl
��� � � � � �

� � � 3 � � � !� �� � � declaration-list � � decl
� � � !� 3 � � � �

unit
� !� � � �� � ��� � � � � ��� � � declaration-list � � decl

� � � � 3 � � � !� �
��� � � declarator � � dtor � func � � % . � � � � � !� 3 � � � ! !� �
unit � � � � � ! !� � � � �

scopeEmpty � 3 � � � �
lift ��� � ��� � � statement-list � � stmt � � � � ! � � 3 � � � ! �
scopeUse

� ! �
lift ��� � � � � declaration-list � � decl

� ! � ! � 3 � � � ! ! �
lift � � � � � � � declaration-list � � decl

� ! � ! ! � 3 � � � � �
lift � � � � � � � declaration-list � � decl

� ! � ! ! ��� 3 � � � �)�
use � rec-L ��	 � � statement-list � � stmt � � � � ! � ! ! ��� � � ��� � � �� � statement-list � � stmt � � � � ! � ! ! � � 3 � � � �

lift � � � � � � � declaration-list � � decl
� ! � ! ! � 3 � � � ! ! ! �

lift � � � ��� � � � declarator � � dtor � func � � % . � � � ! � ! ! ! � 3 � � � ! ! ! ! �
unit � � � � � � � � � � � � �' (��� � �
� �

func � � �� � � � # � � �
The � -meaning of function definitions is the most complicated part of the dynamic semantics of dec-
larations. First the static type environment for the function’s body is calculated and the function
identifier is looked up in the dynamic type environment. Following that, the dynamic semantics of the
function’s body is defined and the function code environment is updated.

The semantics of the function’s body requires a conversion from a statement computation to an
expression computation, performed by function funbody. Execution starts by the calculation of the

13.2. Declarations 173

body’s dynamic type environment, in which the declaration of formal parameters must be taken into
account. This is performed by the ��� -meaning of the function declarator. Following that, a new scope
for the function’s body is defined, starting from the empty scope information that corresponds to the
outermost scope. Upon entering the function’s scope, the objects to be created are those declared inside
the body; upon leaving it, the objects to be destroyed also include the function’s formal parameters.
Subsequently, scope information is updated by including enclosed scopes defined in the function’s
body. This is performed by the � -meaning of the body’s statements.

After all environments and scope information have been determined, the objects declared inside
the body need to be created, allocated and initialized. The label environment is then calculated, using
the function rec-L and starting with an empty label environment. The statements in the function’s
body are then executed, followed by the destruction of the objects declared in the body and the formal
parameters. The result of the body’s execution is the result obtained from the execution of the body’s
statements.

13.2 Declarations
� � � decl � � � � � � (� � � � � � ��� � � ��� � � � � � ��� � � �
(D1) � � � � � decl

����� � unit
(D2) � � declaration declaration-list � � decl

��� � � � � declaration � � decl
� * � � declaration-list � � decl

�
(D3) � � declaration-specifiers init-declarator-list ; � �decl

� � � init-declarator-list � � idtor

DECLARA-
TIONS

� � � � decl � � � � � � (��� � � � � � � � � � � ��� �
(D1) � � � � � � decl

����� � � � � unit u
(D2) � � � declaration declaration-list � � decl

��� � � � � � � � � declaration � � decl
� � 3 � � � � � � � declaration-list � � decl

� � �
(D3) � � � declaration-specifiers init-declarator-list ; � �decl

� � � � init-declarator-list � � idtor

DECLARA-
TIONS�

-MEANING

� � � � decl � � � � � � (� � � � � � ��� � � � � � � � � � ��� � � �
(D1)

� � � � � � decl
����� � unit

(D2)
� � � declaration declaration-list � � decl

��� � ��� � � declaration � � decl
� * � � � declaration-list � � decl

�
(D3)

� � � declaration-specifiers init-declarator-list ; � �decl
� � � � init-declarator-list � � idtor

DECLARA-
TIONS�

-MEANING

� � � � decl � � � � � � (��� � � � � � � � � � � 	 � � � ��� �
(D1)

� � � � � � decl
��� � � � � � � � � unit u

(D2)
� � � declaration declaration-list � � decl

����� � � � � � � �� � � declaration � � decl
� � � 3 � � � � � � � declaration-list � � decl

� � � �
(D3)

� � � declaration-specifiers init-declarator-list ; � �decl
� � � � init-declarator-list � � idtor

DECLARA-
TIONS�

-MEANING

The primary semantic meaning of declarations simply creates the declared objects and functions.
The � -meaning is used for the allocation of objects, whereas the � -meaning is responsible for their
deallocation and destruction. Finally, the � -meaning performs the declared objects’ initialization.

174 Chapter 13. Dynamic semantics of declarations

13.2.1 Declarators
� � � idtor � � � � � � (� � � � � � ��� � � ��� � � � � � ��� � � �
(D4) � � � � � idtor

��� � � unit
(D5) � � init-declarator init-declarator-list � � idtor

����� � � � init-declarator � � idtor
� * � � init-declarator-list � � idtor

�
(D6) � � declarator � � idtor

� � � declarator � � dtor � �	�
(D7) � � declarator = initializer � � idtor

� � � declarator � � dtor � �	�

DECLARATORS

WITH

INITIALIZERS

� � � � idtor � � � � � � (� � � � � � � � � � � � ��� �
(D4) � � � � � � idtor

��� � � � � � unit u
(D5) � � � init-declarator init-declarator-list � � idtor

�8� � � � � �
� � � init-declarator � � idtor

� � 3 � � � � � � � init-declarator-list � � idtor
� � �

(D6) � � � declarator � � idtor
� � � � declarator � � dtor � � �

(D7) � � � declarator = initializer � � idtor
� � � � declarator � � dtor � � �

DECLARATORS

WITH

INITIALIZERS�
-MEANING

� � � � idtor � � � � � � (� � � � � � ��� � � � � � � � � � ��� � � �
(D4)

� � � � � � idtor
��� � � unit

(D5)
� � � init-declarator init-declarator-list � � idtor

��� � ��� � � init-declarator � � idtor
� * � � � init-declarator-list � � idtor

�
(D6)

� � � declarator � � idtor
� � � � declarator � � dtor � �	�

(D7)
� � � declarator = initializer � � idtor

� � � � declarator � � dtor � �	�

DECLARATORS

WITH

INITIALIZERS�
-MEANING

� � � � idtor � � � � � � (� � � � � � � � � � � � 	 � � � ��� �
(D4)

� � � � � � idtor
����� � � � � � � � unit u

(D5)
� � � init-declarator init-declarator-list � � idtor

�8� � � � � � � � �� � � init-declarator � � idtor
� � � 3 � � � � � � � init-declarator-list � � idtor

� � � �
(D6)

� � � declarator � � idtor
����� � � � � � � � unit u

(D7)
� � � declarator = initializer � � idtor

�8��� � � � � � � �
lift ��� � � � � � declarator � � dtor � � � � � � 3 � � � � � � initializer � � init � � � � � � � �

DECLARATORS

WITH

INITIALIZERS�
-MEANING

The alternative meanings of declarators with initializers serve the same purpose as the corresponding
meanings of declarations. In the initialization of objects whose declaration includes an initializer, the
dynamic semantics of the initializer is used.

� � � dtor � � � � � � � � � (� � � � � � ��� � � � � � � � � � ��� � � �
(D8) � � � � � dtor � � � ��� � � � � � create � � �
(D9) � � � � � dtor � � � ��� � � � � � unit

�

(D10) � � declarator [constant-expression] � � dtor � � � � � � declarator � � dtor � �	�
(D11) � � declarator [] � � dtor � �	� � � � declarator � � dtor � � �
(D12) � � * type-qualifier declarator � �dtor � �	� � � � declarator � � dtor � � �
(D13) � � declarator (parameter-type-list) � � dtor � �	� � � � declarator � � dtor � � �
(D14) � � declarator (parameter-type-list) � � dtor � �	� � � � declarator � � dtor � � �

DECLARATORS

The purpose of the primary meaning for declarators has been discussed before. Declarators corre-
sponding to a typedef are simply ignored.

13.2. Declarations 175

� � � � dtor � � � � � � � � � (� � � � � � ��� � � ��� � � � � � � ���$� �
(D8)

� � � � � � dtor � � � �8� � � � � � lookup � � �
(D9)

� � � � � � dtor � � � �8� � � � � � error
(D10)

� � � declarator [constant-expression] � � dtor � � � � � � � declarator � � dtor � � �
(D11)

� � � declarator [] � � dtor � � � � � � � declarator � � dtor � �	�
(D12)

� � � * type-qualifier declarator � �dtor � �	� � � � � declarator � � dtor � � �
(D13)

� � � declarator (parameter-type-list) � � dtor � �	� � � � � declarator � � dtor � � �
(D14)

� � � declarator (parameter-type-list) � � dtor � �	� � � � � declarator � � dtor � � �

DECLARATORS�
-MEANING

The � -meaning for declarators is used in order to extract their denoted value from the dynamic type
environment. An error occurs if the declarator corresponds to a typedef.

� � � � dtor � � � � � � � � � (� � � � � � ��� � � � � ��� �
(D8) � � � � � � dtor � �	� ����� � � � � allocate � � �
(D9) � � � � � � dtor � �	� ����� � � � � unit u
(D10) � � � declarator [constant-expression] � � dtor � �	� � � � � declarator � � dtor � � �
(D11) � � � declarator [] � � dtor � � � � � � � declarator � � dtor � � �
(D12) � � � * type-qualifier declarator � �dtor � � � � � � � declarator � � dtor � � �
(D13) � � � declarator (parameter-type-list) � � dtor � � � � � � � declarator � � dtor � � �
(D14) � � � declarator (parameter-type-list) � � dtor � � � � � � � declarator � � dtor � � �

DECLARATORS�
-MEANING

The � meaning of declarators serves the purpose of allocating objects. Declarators corresponding to
a typedef are ignored.

� � � � dtor � � � � � � � � � (�
(D8)

� � � � � � dtor � � � ��� � � � � � destroy � � �
(D9)

� � � � � � dtor � � � ��� � � unit
(D10)

� � � declarator [constant-expression] � � dtor � � � � � � � declarator � � dtor � � �
(D11)

� � � declarator [] � � dtor � � � � � � � declarator � � dtor � �	�
(D12)

� � � * type-qualifier declarator � �dtor � � � � � � � declarator � � dtor � �	�
(D13)

� � � declarator (parameter-type-list) � � dtor � � � � � � � declarator � � dtor � �	�
(D14)

� � � declarator (parameter-type-list) � � dtor � � � � � � � declarator � � dtor � �	�

DECLARATORS�
-MEANING

The � meaning of declarators serves the purpose of deallocating and destroying objects. Declarators
corresponding to a typedef are again ignored.

� �
 � � dtor � func � � �� ��� � � � � � � (� � � � � � ��� � � � � � � � � �
2 � � ��� � � � � � ��� � � �

(D8) �
 � � � � � dtor � func � � % . � � �8� � � � � � � � � � error
(D9) �
 � � � � � dtor � func � � % . � � �8� � � � � � � � � � error
(D10) �
 � � declarator [constant-expression] � � dtor � func � � % . � � � �
 � � declarator � � dtor � func � � % . � �
(D11) �
 � � declarator [] � � dtor � func � � % . � � � �
 � � declarator � � dtor � func � � % . � �
(D12) �
 � � * type-qualifier declarator � �dtor � func � � % . � � � �
 � � declarator � � dtor � func � � % . � �
(D13) �
 � � declarator (parameter-type-list) � � dtor � func � � % . � � � �
 � � declarator � � dtor � func � � % . � �
(D14) �
 � � declarator (parameter-type-list) � � dtor � func � � % . � � � � � parameter-type-list � � prot � . �

DECLARATORS

 -MEANING

176 Chapter 13. Dynamic semantics of declarations

The � � -meaning is only defined for function declarators. An error occurs if it is used on other types
of declarators. It is a function which takes as parameters the static and dynamic type environments
and the dynamic values of the function’s actual parameters. It returns a computation resulting in
the updated dynamic type environment, where the formal parameters have been created. Also, this
computation initializes the values of the formal parameters to the given values of the actual parameters.

� � � � � dtor � func � � �� ��� � � � � � � (��� � � � � ��� � � � � � � � � � ��� � � �
(D8) � � � � � � � dtor � func � � % . � � ��� � � � � � error
(D9) ��� � � � � � dtor � func � � % . � � ��� � � � � � error
(D10) ��� � � declarator [constant-expression] � � dtor � func � � % . � � � ��� � � declarator � � dtor � func � � % . � �
(D11) � � � � declarator [] � � dtor � func � � % . � � � � � � � declarator � � dtor � func � � % . � �
(D12) � � � � * type-qualifier declarator � �dtor � func � � % . � � � � � � � declarator � � dtor � func � � % . � �
(D13) ��� � � declarator (parameter-type-list) � � dtor � func � � % . � � � ��� � � declarator � � dtor � func � � % . � �
(D14) ��� � � declarator (parameter-type-list) � � dtor � func � � % . � � � � � � parameter-type-list � � prot � . �

DECLARATORS
 � -MEANING

The ��� -meaning is again only defined for function declarators and an error occurs otherwise. It is
a function which takes as parameters the static and dynamic type environments and returns a com-
putation resulting in the updated dynamic type environment, where the formal parameters have been
deallocated and destroyed.

13.2.2 Function prototypes and parameters
� � � prot � � � � � � � � � (� � � � � � � � � � � � � � � � �

2 � � � � � � � � � � � � � �
(D15) � � � � � prot � . � � ��� � � � � � � � � � unit

�

(D16) � � ... � � prot � . � ����� � � � � ��� � � unit
�

(Inaccurate.)

(D17) � � parameter-declaration parameter-type-list � � prot � . � � ����� � � � � ��� � �
� � parameter-declaration � � par � � � � � � � � + � 3 � � � ! � � � parameter-type-list � � prot � . � � � ! � shift + � � � �

PARAMETER

TYPE LISTS

The primary dynamic meaning of parameter type lists serves the same purpose as the � � -meaning
for function declarators, which was defined above. The given semantics is inaccurate as far as the
semantics of function prototypes containing ellipsis is concerned.

� � � � prot � � � � � � � � � (� � � � � � ��� � � � � � � � � � ��� � � �
(D15)

� � � � � � prot � .�� � �8� � � � � � unit
�

(D16)
� � � ... � � prot � . � ����� � � � � unit

�
(Innacurate.)

(D17)
� � � parameter-declaration parameter-type-list � � prot � . � � ��� � �

� � parameter-declaration � � par � � � � * � � parameter-type-list � � prot � . � �

PARAMETER

TYPE LISTS�
-MEANING

The � -meaning of parameter type lists serves the same purpose as the ��� -meaning for function
declarators, defined above. Again, the given semantics is inaccurate as far as the semantics of function
prototypes containing ellipsis is concerned.

� � � par � � � � � � � � � (� � � � � � ��� � � � � � � � � ����� � � � � � � � ��� � � �
(D18) � � declaration-specifiers declarator � �par � � � �8� � � � � � � � �

lift ��� � � � � declarator � � dtor � obj � � %�� � � � � � 3 � � � ! �
lift � � � � � � � declarator � � dtor � obj � � % � � � � � ! � 3 � � � �
lift ��� � � � � � declarator � � dtor � obj � � %�� � � � � ! � 3 � � ���
putValue ���� obj � � % � � � � 3 � ��� ! �
unit

� ! � � � �

PARAMETER

DECLARA-
TIONS

13.2. Declarations 177

The purpose of the primary dynamic meaning for parameter declarations has already been discussed.
The formal parameter is created, allocated and initialized by the value of the corresponding actual
parameter.

� � � � par � � � � � � � � � (�
(D18)

� � � declaration-specifiers declarator � �par � � � � � � � declarator � � dtor � obj � � %�� � �
PARAMETER

DECLARA-
TIONS�

-MEANING

The purpose of the � -meaning for parameter declarations has already been discussed. The formal
parameter is deallocated and destroyed.

13.2.3 Initializations

The primary dynamic meaning of initializations is a function which takes as parameters the current INITIALIZA-
TIONstatic and dynamic type environments, the function code environment and the address of the object to

be initialized. It returns a computation with an unimportant result which initializes the given object to
the value contained in the initializer.

� � � init � � � � � � � � � (��� � � � � ��� � � � � 	 � � � � � � � ����� � � ��� �
(I1) � � � � � init � obj � � %�� � � ��� � � � � � � � � � ���

fullExpression �� � � � � � exp � � � � � � 3 � � � �
putValue ���� obj � � % � � � � 3 � � � ! �
unit u � � �

(I2) � � � � � init � bitfield � � %�� % � � � �8� � � � � � � � � � � � �
fullExpression �� � � � � � exp � � � � � � 3 � � � �

putValue ���� bitfield � ��% � % � � � � � 3 � � � ! �
unit u � � �

For the initialization of simple objects and bit-field members the initializing expression is evaluated
and the result is converted as if by assignment to the appropriate data type. The obtained value is then
stored in memory.

(I3) � � � � � init � array � � % � � � �8� � � � � � � � � � � � � storeStringLit � � � � �
(I4) � � � � � init � array � � % � � � �8� � � � � � � � � � � � � storeWideStringLit � � � � �
The dynamic semantics of the initialization of character and wide character arrays by means of string
and wide string literals is defined by using the storeStringLit
 and storeWideStringLit
 func-
tions.

(I5) � � � initializer-list
� � � init � array � � % � � � �8� � � � � � � � � � � � �

� � initializer-list � � init-a � � � � � � � � �
(I6) � � � initializer-list

� � � init � obj � struct � � % � ��% � � � ��� � � � � � � � � � ���
� � initializer-list � � init-s � � � � � ��� structMember �

� �
(I7) � � � initializer-list

� � � init � obj � union � � % � � %�� � � ��� � � � � � � � � � ���
� � initializer-list � � init-u � � � � � ��� unionMember �

� �
Aggregate objects can also be initialized by bracketed lists of initializers. The type of the object
determines the semantic function that will be used.

178 Chapter 13. Dynamic semantics of declarations

� � � init-a � � � � � � � � � (� � � � � � ��� � � � � 	 � � � � � � � � � � ��� � � � � � � ��� �
(I8) � � initializer � � init-a � � � �8� � � � � � � � � � � � � � � � � ��� � � �

� � initializer � � init � � � � � ��� � � � � 3 � � � �
zeroArray � � shift + � � � � ��� + � � error

(I9) � � initializer initializer-list � � init-a � � � ����� �
� � initializer � � init � � � � � ��� � � � � 3 � � � �
� � initializer-list � � init-a � � � � � ��� shift + � � � � ��� + � � error

ARRAY INI-
TIALIZATION

The dynamic meaning of array initialization is defined iteratively for each of the array’s elements. In
case the number of initializers contained in the list is smaller than the number of array elements, the
remaining elements are initialized to zero values.

� � � init-s � � � � � � � � � (� � � � � � � � � � � � 	 � � � � � � � �� � � ��� � � � � �$� � � � ��� �
(I10) � � initializer � � init-s � � � ��� � � � � � � � � ��� � � �

� � initializer � � init � � � � � ��� � � � � � 3 � � � �
zeroStruct � � � � � �

(I11) � � initializer initializer-list � � init-s � � � �8� � � � � � � � � � � � � �
� � initializer � � init � � � � � ��� � � � � � 3 � � � �
� � initializer-list � � init-s � � � � � � � � � � �

STRUCTURE

INITIALIZA-
TION

The dynamic meaning of structure initialization is defined iteratively for each of the structure’s mem-
bers. In case the number of initializers contained in the list is smaller than the number of the structure’s
members, the remaining members are initialized to zero values.

� � � init-u � � � � � � � � � (� � � � � � ��� � � � � 	 � � � � � � � �� � � ��� � � � ����� � � � ��� �
(I12) � � initializer � � init-u � � � ����� � � � � � � � � � � � � � � initializer � � init � � � � � � � � � � � �

UNIT INITIAL-
IZATION

Finally, the dynamic meaning of union initialization is defined as the dynamic meaning of initializing
the union’s first element.

Chapter 14

Dynamic semantics of statements

This chapter defines the dynamic semantics of statements. An introduction to the four alternative CHAPTER

OVERVIEWdynamic meanings of statements is given in Section 14.1. Subsequently, the dynamic semantics of
statement lists is defined in Section 14.2 and the dynamic semantics of statements is defined in Sec-
tion 14.3.

14.1 Dynamic functions

Four alternative dynamic meanings are defined for statements and statement lists of phrase type PRIMARY

MEANINGstmt � . Each corresponds to a different aspect of their execution. The primary dynamic mean-
ing of statements is a function returning a statement computation. Its parameters are the current static
and dynamic type environments, the function code environment and the label environment.

� � � stmt � � � � � � � � � (� � � � � � ��� � � � � 	 � � � � � � � � ��� �

The second alternative dynamic meaning for statements is used for the extraction of information � -MEANING

concerning scopes. It is a function, taking as parameters the current static environment and scope
information and returning the updated scope information.

� � � � stmt � � � � � � � (� � � � 	 � � ��� � � � � 	 � � �

The third alternative meaning is used for updating the label environment, adding information about � -MEANING

the labels that are defined in the statement. It is a function which takes as parameters the current static
and dynamic environments, the function code environment and an initial label environment and returns
the updated label environment.

� 	 � � stmt � � � � � � � � � (��� � � � � ��� � � � � 	 ��� � � � ��� � � � � � �

Finally, the fourth alternative dynamic meaning is used in a similar way for updating the case label �
-MEANING

environment. It is again a function taking as parameters the current static and dynamic environments,
the function code environment and the label environment. It also takes the data type � of the con-
trolling expression for the case label environment and an initial case label environment of type
 � � ! .
The result is the updated case label environment, which additionally contains information about case
labels defined in the statement.

� � � � stmt � � � � � � � � � (� � � � � � � � � � � � 	 � � � � � � � ! � '���� � ����� � � ��� ��� ��� � � � � � ��� �

180 Chapter 14. Dynamic semantics of statements

14.2 Statement lists

(S1) � � � � � stmt � � � ��� � � � � � � � � � � � unit u
(S1) � � � � � � stmt � � � ����� � unit
(S1) 	 � � � � � stmt � � � ��� � � � � � � � � unit
(S1)

� � � � � � stmt � � � ����� � � � � � � � � � � � � � � unit

EMPTY

STATEMENT

LIST

The dynamic semantics of empty statement lists is very simple, for all alternative meanings.

(S2) � � statement statement-list � � stmt � � � �8� � � � � � � � � � � �
� � statement � � stmt � � � � � � � 3 � � � � � � statement-list � � stmt � � � � � � � �

(S2) � � � statement statement-list � � stmt � � � �8� � �
� � � statement � � stmt � � � � * � � � statement-list � � stmt � � � �

(S2) 	 � � statement statement-list � � stmt � � � �8� � � � � � � � � � � �
follow ��	�� � statement � � stmt � � � � � � � � � � � statement-list � � stmt � � � � � � � � 3 � � � ! �
	 � � statement-list � � stmt � � � � � � � ! �

(S2)
� � � statement statement-list � � stmt � � � �8� � � � � � � � � � � � � � � � � �

follow � � � � statement � � stmt � � � � � � � � � � � � � statement-list � � stmt � � � � � � � � 3 � � ! �� � � statement-list � � stmt � � � � � � � � � ! �

NON-EMPTY

STATEMENT

LIST

The dynamic semantic meanings of non-empty statement lists is formed by appropriately sequencing
the meanings of their components. The first two equations are simple. In the last two, the auxiliary
function follow is used, to indicate that the statement whose dynamic information is given by its first
parameter is followed, under normal order of execution, by the statement list whose primary dynamic
meaning is given by its second parameter.

14.3 Statements

The following sections define the dynamic semantics of all kinds of C statements, according to the
same classification that is followed in the standard.

14.3.1 Empty and expression statements

(S3) � � ; � � stmt � � � ��� � � � � � � � � � � � unit u
(S3) � � � ; � � stmt � � � �8� � � unit
(S3) 	 � � ; � � stmt � � � ����� � � � � � � � unit
(S3)

� � � ; � � stmt � � � �8� � � � � � � � � � � � � � � � unit

EMPTY

STATEMENT

As in the case of empty statement lists, the dynamic semantics of empty statements is very simple.

(S4) � � expression ; � � stmt � � � ��� � � � � � � � � � � � lift � � � � � � expression � � exp � ��� � � � � � 3 � � � � unit u �
(S4) � � � expression ; � � stmt � � � �8� � � unit
(S4) 	 � � expression ; � � stmt � � � ����� � � � � � � � unit
(S4)

� � � expression ; � � stmt � � � �8� � � � � � � � � � � � � � � � unit

EXPRESSION

STATEMENT

The primary dynamic meaning for expression statements needs only convert the expression compu-
tation to a statement computation, discarding the result. The other alternative meanings are easily
defined.

14.3. Statements 181

14.3.2 Compound statement

(S5) � � � id declaration-list statement-list
� � � stmt � � � ��� � � � � � � � � � � �

lift �	� � � rec ��� declaration-list �� � � � � � 3 � � � ! �
inScope id �

lift ��� � � � � declaration-list � � decl
� ! � � ! � � � � 3 � � � ! �

lift � � � � � � � declaration-list � � decl
� ! � ! � 3 � � � � �

lift � � � � � � � declaration-list � � decl
� ! � ! � � 3 � � � �(�

� � statement-list � � stmt � � � � ! � ! � � 3 � � � �
lift � � � � � � � declaration-list � � decl

� ! � ! � 3 � � � ! ! �
unit � � � � � � � �

BLOCKS

In the primary dynamic meaning for the compound statement, the static type environment for the
body is first calculated and a change of the current scope is performed. Following that, objects defined
within the block are created, allocated and initialized, using three forms of alternative dynamic mean-
ings for declarations. The statement list is then executed, and following that, the defined objects are
destroyed.

(S5) � � � � id declaration-list statement-list
� � � stmt � � � ����� � � � �

lift �	�
� � rec ��� declaration-list �� � � � � � 3 � � � ! �
defineBlock id � !� � ��� � � � � � lift ��� � � � � declaration-list � � decl

��� � � � � �
� � � 3 � � � !� �� � � declaration-list � � decl

� � � !� 3 � � � � unit
� !� � � �� � � � � � � � ��� � � declaration-list � � decl

� � � � 3 � � � !� � unit � � � � � !� � � �� 3 � � � ! �
� � � statement-list � � stmt � � � � ! � ! 3 endBlock � �

Updating the scope information for compound statements requires the definition of a new scope. The
dynamic semantics of the declaration is used for specifying the objects that need to be created when
the scope is entered and destroyed when the scope is left. Finally, the scope information is further
updated by statements in the block’s body.

(S5) 	 � � � id declaration-list statement-list
� � � stmt � � � ��� � � � � � � � � � � �

lift �	� ��� rec ��� declaration-list �� � � � � � 3 � � � ! �
inScope id �

lift ��� � � � � declaration-list � � decl
� ! � � ! � � � � 3 � � � ! �

follow ��	 � � statement-list � � stmt � � � � ! � ! � � �� lift � � � � � � � declaration-list � � decl
� ! � ! � 3 � � � ! ! � unit � � � � � �

(S5)
� � � � id declaration-list statement-list

� � � stmt � � � ����� � � � � � � � � � � � � � � � �
lift �	� � � rec ��� declaration-list �� � � � � � 3 � � � ! �
inScope id �

lift ��� ��� � � declaration-list � � decl
� ! � � ! � � � � 3 � � � ! �

follow � � � � statement-list � � stmt � � � � ! � ! � � � � �� lift � � � � � � � declaration-list � � decl
� ! � ! � 3 � � � ! ! � unit � � � � � �

The meanings
�

and � for block statements are very similar. The only thing to notice is that the state-
ment list is followed, under normal order of execution, by the destruction of locally defined objects.

182 Chapter 14. Dynamic semantics of statements

14.3.3 Selection statements

(S6) � � if (expression) statement � � stmt � � � ��� � � � � � � � � � � �
lift � � � � � � expression � � exp � ��� � � � ��� 3 � ��� �
checkBoolean ��� � � � � � � statement � � stmt � � � � � � � unit u �

(S6) � � � if (expression) statement � � stmt � � � � � � � statement � � stmt � � �
(S6) 	 � � if (expression) statement � � stmt � � � � 	�� � statement � � stmt � � �
(S6)

� � � if (expression) statement � � stmt � � � � � � � statement � � stmt � � �

IF-THEN

STATEMENT

In the case of the if statement with no else clause, the definition of dynamic semantics is very simple.
In the primary meaning, the condition is evaluated and, if it is true, the then clause is executed. Oth-
erwise, nothing is done. In the alternative statements, the meaning of the if statement is trivially the
meaning of its then clause.

(S7) � � if (expression) statement
�
else statement

� � � stmt � � � ����� � � � � � � � � � �
lift � � � � � � expression � � exp � ��� � � � ��� 3 � ��� �
checkBoolean ��� � � � � � � statement

� � � stmt � � � � � � � � � statement
� � � stmt � � � � � � � �

(S7) � � � if (expression) statement
�
else statement

� � � stmt � � � �8� � �
� � � statement

� � � stmt � � � � * � � � statement
� � � stmt � � � �

(S7) 	 � � if (expression) statement
�
else statement

� � � stmt � � � �8� � � � � � � � �
	 � � statement

� � � stmt � � � � * 	 � � statement
� � � stmt � � � �

(S7)
� � � if (expression) statement

�
else statement

� � � stmt � � � �8� � � � � � � � � � � � � � � �� � � statement
� � � stmt � � � � � � � � � * � � � statement

� � � stmt � � � � � � � � �

IF-THEN-ELSE

STATEMENT

The case of if statements containing else clauses is slightly more complex. In the primary meaning,
the else clause is executed if the condition fails. In other alternatives, the dynamic meanings of both
clauses have to be appropriately combined.

(S8) � � switch (expression) statement � � stmt � � � ��� � � � � � � � � � � �
lift � � � � � � expression � � exp � ��� � � � ��� 3 � ��� �
use � setBreak � � � � statement � � stmt � � � � � � � � ! ! � � � � � �

getCase � % ��� � � cast � � �� � � � � � � � � �

SWITCH

STATEMENT

The primary dynamic meaning of the switch statement first evaluates the controlling expression. Fol-
lowing that, the case label environment for the body is calculated, starting with an empty environment.
Execution depends on the value of the controlling expression. Notice that within the body the break
statement completes the execution of the switch statement.

(S8) � � � switch (expression) statement � � stmt � � � � � � � statement � � stmt � � �
(S8) 	 � � switch (expression) statement � � stmt � � � � 	�� � statement � � stmt � � �
(S8)

� � � switch (expression) statement � � stmt � � � ��� � � � � � � � � � � � � � � � unit

Alternative meanings for the switch statement are easy to define. The only thing to notice is that its � -
meaning does not enter a new switch statement, when calculating case labels. Case labels are always
associated with the smallest enclosing switch statement.

14.3. Statements 183

14.3.4 Labeled statements

(S9) � � case constant-expression : statement � � stmt � � � � � � statement � � stmt � � �
(S9) � � � case constant-expression : statement � � stmt � � � � � � � statement � � stmt � � �
(S9) 	 � � case constant-expression : statement � � stmt � � � � 	�� � statement � � stmt � � �
(S9)

� � � case constant-expression : statement � � stmt � � � ����� � � � � � � � � � � � � � � � �
lift ��� � � � � constant-expression � � val � � � � � � 3 � unit � cast � � �� ��� � 3 � ��� �
setCase � % ��� � � ��� � � � � � � � � statement � � stmt � � � � � � � � � � 3 � � ! �� � � statement � � stmt � � � � � � � � � ! � �

CASE LABEL

The dynamic semantics of case labels is straightforward, except for the case of the � -meaning. In this
case, the label needs to be defined in the case label environment Otherwise, case labels are ignored.

(S10) � � default : statement � � stmt � � � � � � statement � � stmt � � �
(S10) � � � default : statement � � stmt � � � � � � � statement � � stmt � � �
(S10) 	 � � default : statement � � stmt � � � � 	 � � statement � � stmt � � �
(S10)

� � � default : statement � � stmt � � � ��� � � � � � � � � � � � � � � � � �
setDefault � % � � � � � � � � � � � � � statement � � stmt � � � � � � � � � � 3 � � ! �� � � statement � � stmt � � � � � � � � � ! �

DEFAULT

LABEL

In a similar way, the dynamic semantics of default labels is straightforward. In the case of the � -
meaning, the label again needs to be defined in the case label environment. Otherwise, default labels
are ignored.

(S11) � � I : statement � � stmt � � � � � � statement � � stmt � � �
(S11) � � � I : statement � � stmt � � � � � � � statement � � stmt � � �
(S11) 	 � � I : statement � � stmt � � � ����� � � � � � � � � � �

setLabel
� � � ��� � � � � � � � statement � � stmt � � � � � � � � � � � 3 � � � ! �

	 � � statement � � stmt � � � � � � � ! �
(S11)

� � � I : statement � � stmt � � � ��� � � � � � � � � � � � � � � � � � � � statement � � stmt � � �

IDENTIFIER

LABELS

In the case of the dynamic semantics for identifier labels, the focus of attention is on the
�

-meaning,
where the identifier label must be defined. Otherwise, identifier labels are simply ignored.

14.3.5 Iteration statements

The semantics of iteration statements is defined by using the auxiliary function loop � � � ! , where the
parameter determines the data type of the result that can be returned by return statements in the
loop’s body and parameter � determines the data type of the loop’s condition. The function takes
three parameters: an expression computation that corresponds to the loop’s condition, a statement
computation that corresponds to the loop’s body and an expression computation that corresponds to
additional code that must be executed between successive iterations of the loop. The result is the
statement computation for the whole loop.

� loop � % � � � � � � � � ! � � ����� � � � � ��� � � � ��� � ��� � ��� �
loop � % ��� ��� 1 � � � � � � � 1 � � fix � � � �

lift � � � 1 � 3 � � � �
checkBoolean ��� � � � � setBreak � follow � setContinue � � ��� lift � � � 1 � 3 � � � � � � � � unit u � �

184 Chapter 14. Dynamic semantics of statements

The least fixed point operator is used for the definition of the loop’s dynamic semantics. The loop’s
condition is first evaluated. If it is true, then the body is executed, followed by the additional code,
and the loop is repeated. Otherwise, nothing is done. Inside the loop’s body, statements break and
continue may alter the normal order of execution.

(S12) � � while (expression) statement � � stmt � � � ����� � � � � � � � � � �
loop � % ��� � � � expression � � exp � ��� � � � ��� � � � statement � � stmt � � � � � � � � � unit u �

(S12) � � � while (expression) statement � � stmt � � � � � � � statement � � stmt � � �
(S12) 	 � � while (expression) statement � � stmt � � � �8� � � � � � � � � � � ������ � � loop � % � � � � � expression � � exp � ��� � � � � � � � � statement � � stmt � � � � � � � � � unit u �' (

follow ��	 � � statement � � stmt � � � � � � � � �
(S12)

� � � while (expression) statement � � stmt � � � ��� � � � � � � � � � � � � � � � � ������ � � loop � % ��� � � � expression � � exp � ��� � � � � � � � � statement � � stmt � � � � � � � � � unit u �' (
follow � � � � statement � � stmt � � � � � � � � � � �

WHILE

STATEMENT

The simplest type of loop is the while statement, which is directly defined using the loop � � � ! function.
No additional code is required to be executed between iterations. In the

�
and � -meanings, execution

of the loop’s body is followed by a repetition of the loop.

(S13) � � do statement while (expression) ; � � stmt � � � �8� � � � � � � � � � � ������ � � � � � statement � � stmt � � � � � � �� � loop � % ��� � � � expression � � exp � ��� � � � � � � � � unit u �' (
setBreak � follow � setContinue � � � � �

(S13) � � � do statement while (expression) ; � � stmt � � � � � � � statement � � stmt � � �
(S13) 	 � � do statement while (expression) ; � � stmt � � � ��� � � � � � � � � � � ������ � � loop � % � � � � � expression � � exp � ��� � � � � � � � � statement � � stmt � � � � � � � � � unit u �' (

follow ��	 � � statement � � stmt � � � � � � � � �
(S13)

� � � do statement while (expression) ; � � stmt � � � �8� � � � � � � � � � � � � � � � � ������ � � loop � % ��� � � � expression � � exp � ��� � � � � � � � � statement � � stmt � � � � � � � � � unit u �' (
follow � � � � statement � � stmt � � � � � � � � � � �

DO-WHILE

STATEMENT

In the dynamic semantics for do statements the loop’s body is executed first, making the necessary
adjustments for the break and continue statements. Then, the full loop is executed in the way defined
by function loop � � � ! . No additional code is required to be executed between iterations.

(S14) � � for (expr-opt
�
; expr-opt

�
; expr-opt

�
) statement � � stmt � � � �8� � � � � � � � � � � �

lift � � � � � � expr-opt
� � � exp � � � � � � � � 3 � � � �

loop � % ��� � � � expr-opt
� � � exp � ��� � � � � � � � � statement � � stmt � � � � � � � �� � � expr-opt

� � � exp � ��� � � � � 3 � � � � unit u � � �
(S14) � � � for (expr-opt

�
; expr-opt

�
; expr-opt

�
) statement � � stmt � � � � � � � statement � � stmt � � �

(S14) 	 � � for (expr-opt
�
; expr-opt

�
; expr-opt

�
) statement � � stmt � � � ��� � � � � � � � � � � ������ � � loop � % � � � � � expr-opt

� � � exp � ��� � � � � � � � � statement � � stmt � � � � � � � �� � � expr-opt
� � � exp � ��� � � � � 3 � � � � unit u � � �� ! � lift � � � � � � expr-opt

� � � exp � ��� � � � � 3 � � � � � � �' (
follow ��	 � � statement � � stmt � � � � � � � � � !

(S14)
� � � for (expr-opt

�
; expr-opt

�
; expr-opt

�
) statement � � stmt � � � ��� � � � � � � � � � � � � � � � � ������ � � loop � % ��� � � � expr-opt

� � � exp � ��� � � � � � � � � statement � � stmt � � � � � � � �� � � expr-opt
� � � exp � ��� � � � � 3 � � � � unit u � � �� ! � lift � � � � � � expr-opt

� � � exp � ��� � � � � 3 � � � � � � �' (
follow � � � � statement � � stmt � � � � � � � � � � � !

FOR

STATEMENT

Finally, in the case of the for statement, function loop � � � ! is again used, this time with additional code
between successive iterations. In the

�
and � meanings, the loop’s body is followed by the execution

of the additional code and a new iteration of the loop.

14.4. Optional expressions 185

14.3.6 Jump statements

(S16) � � break ; � � stmt � � � �8� � � � � � � � � � � � getBreak � �
(S16) � � � break ; � � stmt � � � ����� � unit
(S16) 	 � � break ; � � stmt � � � ����� � � � � � � � unit
(S16)

� � � break ; � � stmt � � � ����� � � � � � � � � � � � � � � unit

BREAK

STATEMENT

(S15) � � continue ; � � stmt � � � ����� � � � � � � � � � � getContinue � �
(S15) � � � continue ; � � stmt � � � ��� � � unit
(S15) 	 � � continue ; � � stmt � � � �8��� � � � � � � � unit
(S15)

� � � continue ; � � stmt � � � ��� � � � � � � � � � � � � � � � unit

CONTINUE

STATEMENT

The dynamic semantics of the break and continue statements is very simple. The appropriate contin-
uation is taken from the statement computation.

(S17) � � goto I ; � � stmt � � � ����� � � � � � � � � � � getLabel
� � � �

(S17) � � � goto I ; � � stmt � � � �8� � � unit
(S17) 	 � � goto I ; � � stmt � � � �8� � � � � � � � � unit
(S17)

� � � goto I ; � � stmt � � � �8� � � � � � � � � � � � � � � � unit

GOTO

STATEMENT

The semantics of the goto statement is also easy. The appropriate continuation is found from the given
label environment.

(S18) � � return ; � � stmt � void � �8� � � � � � � � � � � � result void
� � u

(S18) � � return ; � � stmt � � � ����� � � � � � � � � � � result � � � �
(S18) � � � return ; � � stmt � � � ����� � unit
(S18) 	 � � return ; � � stmt � � � ����� � � � � � � � unit
(S18)

� � � return ; � � stmt � � � ����� � � � � � � � � � � � � � � unit

RETURN

STATEMENT

(S19) � � return expression ; � � stmt � � � ����� � � � � � � � � � � lift � � � � � � � expression � � exp � � � � � � � 3 � result � � � �
(S19) � � � return expression ; � � stmt � � � ����� � unit
(S19) 	 � � return expression ; � � stmt � � � ��� � � � � � � � � unit
(S19)

� � � return expression ; � � stmt � � � ����� � � � � � � � � � � � � � � unit

The semantics of the two flavours of the return statement is again straightforward. In the case of a
simple return, a distinction is made between functions whose return types are void and other functions.
For the former, the value u is returned as the function’s result. For the latter, the erroneous value �
is returned. If this value is used in the calling function, an error occurs. In the case of returned
expressions, conversions as if by assignment apply.

14.4 Optional expressions

(S20) � � � � � val � int � ����� � � � � 1 � � int MISSING

EXPRESSION

The dynamic semantics of a missing optional expression is the same as if an integer constant was
present, with the value � .

Part V

Epilogue

Chapter 15

Implementation

This chapter investigates possible ways to implement a denotational semantics, using a general pur- CHAPTER

OVERVIEWpose programming language. In Section 15.1 the problem is discussed and the denotational semantics
of a small but purposefully complex functional programming language is defined and used as an exam-
ple in the rest of the chapter. Section 15.2 explores the advantages and disadvantages of the functional
programming paradigm for the given task, using the languages Standard ML and Haskell, whereas
Section 15.3 does the same for the object-oriented programming paradigm, using the language C++.
Finally, in Section 15.4 an implementation of the proposed semantics for the C programming language
is outlined, using Haskell as the target language.

15.1 Definition of the problem

Although not in the spirit of operational semantics, a denotational description of a programming lan- IMPLEMENTA-
TION OF

SEMANTICS
guage defines directly an execution model, that is, an abstract interpreter for the programming lan-
guage. This execution model can be implemented by translating the denotational semantics to a pro-
gram, written in some target language. It is not always easy to implement such an interpreter by using
a general purpose programming language as the target. It is much harder to implement an efficient
interpreter, but this subject is not touched in this thesis. Using an appropriate target language is very
important and can greatly reduce the complexity of this task. Several languages have been suggested
and used for this purpose, with more or less success. It seems that typed functional programming
languages are more suitable, as suggested in [Watt86], where ML is used as a meta-language for
denotational descriptions. Non-strict functional languages like Haskell also present significant advan-
tages. Imperative programming languages have also been suggested, such as Algol 68 [Paga79] and
Pascal [Alli83, Alli85], with considerably less success. A more thorough presentation of related work
is made in Section 16.4.

In order to formulate a denotational description, a meta-language has to be employed. A variation
of the typed � -calculus over Scott domains has been used in this thesis for defining the semantics of
C, and the same meta-language is considered in this chapter. Regardless of the target language, the
implementation of a denotational description requires a means of translating abstract syntax, domain
definitions and semantic equations into code. A complete interpreter would also require a parser and
a translator from concrete to abstract syntax, but these are not covered in this chapter.

For simplicity reasons, a language simpler than C is used as an example in this chapter. This lan- EXAMPLE

guage is purely functional and features high-order functions, recursion by means of a fix operator,
advanced control constructs, such as abort, call/cc and a control delimiter or prompt, written
as #. It is called PFLC (Pure Functional Language with Control). The complexity of this exam-

190 Chapter 15. Implementation

ple serves the purpose of using as many elements of the meta-language as possible, in its semantic
description.

The abstract syntax of PFLC is defined as follows. A program is just an expression that must beABSTRACT

SYNTAX evaluated. Expressions are integer or boolean constants, bound identifiers, conditionals, applications
of binary or unary operators, lambda abstractions, function applications, fixed points or applications
of control operators. A variety of binary and unary operators is supported.

�
program ��� � expression

�
expression ��� � n � true � false � I � if expression then expression else expression� expression binary-operator expression � unary-operator expression� lambda I . expression � expression expression � fix I . expression� abort expression � call/cc expression � # expression

�
binary-operator ��� � + � - � * � / � = ��� <> � < � > � <= � >= � and � or

�
unary-operator ��� � - � not
All control operators have been inspired from the work of Sitaram and are described in detailCONTROL

OPERATORS in [Sita90]. A brief description is attempted here. An evaluation context can be understood as an
expression with a hole in it; the value of the whole context depends on the value that is placed in
the hole. At any time during the execution of a program, there is stack of evaluation contexts and an
expression that is currently evaluated. The context that is at the top of the stack is called the current
evaluation context and the result of the currently evaluated expression is the value placed its hole. In
the beginning of the program, the stack contains just one context which consists of a single hole; the
currently evaluated expression is the whole program.

Expression “abort E” aborts the evaluation of the current context and replaces it with expression
E. As an example, consider the function F defined by the term:

lambda x. lambda y. 7 + (if y=0 then abort 42 else x+y)

With this in mind, expression “F � � ” results in the value � � , i.e.
� � � � � , whereas expression “F � � ”

results in the value � � , since abort is triggered.

In expression “call/cc E”, it is expected that E is a function, taking as argument an abstracted
form of the surrounding evaluation context, i.e. a continuation. It leaves the evaluation context in-
tact. On application, this continuation replaces the current evaluation context. Consider the following
example, in which function G is defined by the term:

lambda n. 2 + call/cc (lambda c. n + (if n=0 then c 40 else n))

In this example, expression “G � ” gives the result � , i.e. � � � � � , whereas expression “G
�
” gives

the result � � , i.e. � � � � . In the second case, the context � surrounding the call/cc operator is used
with the value � � in its hole.

Finally, the control delimiter constraints control manipulation by restricting the current evaluation
context. When expression “# E” is evaluated, a new evaluation context is pushed to the stack, con-
sisting of a single hole. Apart from that, evaluation of E continues as usual. The effect of the control
delimiter is illustrated by the following example. Consider the function H defined below, which is
identical to the function F in the example for abort, except for the prompt:

lambda x. lambda y. 7 + #(if y=0 then abort 42 else x+y)

In this case however, evaluation of “H � � ” results in the value ��� , i.e.
� � � � , because the abort

operation was restricted by the control delimiter to the interior of the parentheses.

15.1. Definition of the problem 191

Figure 15.1: The denotational semantics of PFLC.
� � � � program � � � �

� � � expression � � � � � � expression � ��� � � � ��� � id

� � � � expression � � � � (�� � � � �
� � � n � � � � � � �
� � � true � � � � � � true
� � � false � � � � � � false
� � � I � � � � � � � � � �
� � � if expression then expression

�
else expression

� � � � � �
� � � expression � � � � � � � � � � ' � � � � � expression

� � � � � � � � expression
� � � � � �

� � � expression
�

binary-operator expression
� � � � � �� � � binary-operator � � � � � � expression

� � � � ��� � � � expression
� � � � � �

� � � unary-operator expression � � � � ��� � � unary-operator � ��� � � � expression � � � � �
� � � lambda I . expression � � � � � � �	� � � � � � � � expression � � � � �
� � � � �
� � � expression

�
expression

� � � � � � � � � expression
� � � � � � � � � � � � expression

� � � � � � � � ��
 � � � � � � �
� � � fix I . expression � � � � � � �	� � fix � � � ��
 � � � � expression � � � � �
��� � �

id � � � �
� � � abort expression � � � � � � � � expression � � � id
� � � call/cc expression � � � � � � � � expression � � � � � � ��
 � �	� � � � � ��� ! � � � � � � �
� � � # expression � � � � � � � � � � expression � � � id �

� � � � binary-operator � � � � � � � � � � � � � � � � � �
� � � + �(� � � � � � � � �) � � � � � � � � �

etc.

� � � � unary-operator � � � � � � � � � � � �
� � � - �

etc.

� � � � � � � � � � � �
� � � � up � strict � �

�
 � � � � � � � � � � �

 � � down � � � � �

The following domains are used in the definition of the semantics of PFLC. The primitive domains SEMANTICS

� , � and �
	 � represent integer numbers, truth values and identifiers respectively. PFLC is an untyped
language. Values are distinguished in basic values, i.e. integers and booleans, and functions. The
environment is a simple mapping from identifiers to values.

� 	 � � �5' (basic values)� � � � � � � � � � � � (function values)� � � 	 � � (values)� � � � (� � � � � � � (environments)� � � � � � � � (continuations)

The semantic functions for PFLC are defined in Figure 15.1, where � � � and � � �
	 � . A simple
continuation semantics is used. The auxiliary functions � and � facilitate the management of function
values. The semantics itself is not further discussed here, since it is only given as an example. The
reader is referred to [Moss90] for an introduction to the denotational semantics of purely functional
languages, and to [Sita90] for the semantics of control operators.

192 Chapter 15. Implementation

15.2 The functional programming paradigm

Typed functional programming languages present many similarities with the meta-languages that areTHE DIRECT

APPROACH used in specifying denotational semantics. Functions, products and sums are directly supported in
most typed functional languages and the least fixed point operator can be rather easily implemented.
Bottom and top elements need special treatment. However, bottom elements can simply be omitted if
they represent non-termination, as is usually the case. The correct representation of non-termination
is a problem that cannot be solved in any implementation of denotational semantics: the interpreter
will simply not terminate in the case of non-termination... Moreover, top elements modelling error
conditions can be represented by exceptions, which are supported in most typed functional program-
ming languages. The abstract syntax can usually be represented very naturally by appropriate data
types. With all this in mind, a direct translation from a denotational semantics to a functional program
is not only feasible, but relatively easy. For moderately sized languages, this is the most efficient way
to create a rapid prototype of an interpreter. The approach that was sketched above is discussed in
Section 15.2.1, using Standard ML as the target language.

As the size of the semantic description grows, the disadvantages of the direct translation approachTHE

STRUCTURED

APPROACH
multiply. The main problems are that the resulting functional program is not well-structured and that
the details of the translation, which must be repeated over and over, are easily forgotten. For these
reasons, a second more well-structured approach is suggested for large semantic descriptions. This
approach exploits features of the target language such as modules, signatures, functors or type classes,
which improve the modularity of the resulting functional program. Furthermore, the mathematical
objects which participate in the semantics are modelled in a consistent way and thus the development
of the functional program is facilitated. This second approach is further discussed in Section 15.2.2,
using Haskell as the target language.

15.2.1 Standard ML

Standard ML is a strongly-typed eager functional language [Harp86, Harp89, Miln90, Miln91]. In aTHE

LANGUAGE relatively short time, it has become remarkably popular in the functional programming community and
a number of very good compilers are currently available. Standard ML features a static polymorphic
type system, exceptions, mutable variables and arrays, modules and abstract types. In this section
a direct translation of the semantics of PFLC to a Standard ML program will be attempted. The
structured approach could also have been used.

The direct translation of the semantics of PFLC results in a Standard ML program of approxi-OVERVIEW

mately 200 lines. Nearly 40 lines were required for the implementation of the abstract syntax and 150
lines for that of the semantics. The implementation of the semantics was relatively straightforward and
its size is surprisingly small, considering that the implementation of a pretty-printer for the abstract
syntax required an additional 100 lines of code.

The implementation of the abstract syntax was completely straightforward. The following dataABSTRACT

SYNTAX types were defined for the abstract syntax of expressions. All constructors end with a prime symbol,
in order to be distinguished from type names.

datatype Expr =
Int’ of int

| True’
| False’

15.2. The functional programming paradigm 193

| Ident’ of Ide
| BinOp’ of Expr * BinOp * Expr
| UnOp’ of UnOp * Expr
| If’ of Expr * Expr * Expr
| Lambda’ of Ide * Expr
| App’ of Expr * Expr
| Fix’ of Ide * Expr
| Abort’ of Expr
| CallCC’ of Expr
| Prompt’ of Expr

The definition of semantic domains presents some difficulties. The main problem is that the defi- SEMANTIC

DOMAINSnition of types in Standard ML does not allow mutually recursive definitions. Thus, mutual recursion
had to be eliminated. Bottom and top elements were omitted from semantic domains, and lifted do-
mains were not used. An exception was defined for the representation of all top elements.

type T = bool
type N = int

datatype B = Number’ of N | Boolean’ of T

datatype V = Basic’ of B | Function’ of V -> (V -> V) -> V

type K = V -> V
type F = V -> K -> V
type Env = Ide -> V

exception TOP

The least fixed point operator cannot be implemented in Standard ML using its equational property. LEAST FIXED

POINTSThe following definition leads to non-termination every time fix is called, due to Standard ML’s eager
evaluation:

fun fix f = f (fix f)

Unfortunately, it does not seem possible to implement a least fixed point operator of the polymorphic
type ��� � � � � � . However, it is possible to construct such an operator of the more specific
type � ��� � � � � ��� � � � � � � � � , and this is adequate for the semantics of PFLC. The
straigthforward approach is:

fun fix f x = f (fix f) x

but the following version suggested in [Gunt92] can also be used:

local datatype ’a fix = FUN of ’a fix -> ’a
fun NUF (FUN x) = x

in fun fix f =
(fn x => (fn y => f((NUF x) x) y))

(FUN (fn x => (fn y => f((NUF x) x) y)))
end

In case the more general type of the least fixed point operator is required, the direct translation ap-
proach is not possible and a different way of circumventing this problem must be found.

194 Chapter 15. Implementation

The translation of the semantic equations is again straightforward. A small excerpt is given below.SEMANTICS

The resemblance between this code and Figure 15.1 is striking.

fun semP E = semE E (fn I => raise TOP) (fn e => e)

and semE (Int’(n)) rho kappa = kappa (Basic’ (Number’ n))
| semE True’ rho kappa = kappa (Basic’ (Boolean’ true))
| semE (Ident’(I)) rho kappa = kappa (rho I)
| semE (If’(E, E1, E2)) rho kappa =
semE E rho (fn Basic’ (Boolean’ t) =>

if t then semE E1 rho kappa else semE E2 rho kappa)
| semE (App’(E1, E2)) rho kappa =
semE E1 rho (fn e1 => semE E2 rho (fn e2 => delta e1 e2 kappa))

| semE (Abort’(E)) rho kappa = semE E rho (fn e => e)
| semE (CallCC’(E)) rho kappa =
semE E rho (fn e => delta e (phi (fn p => fn kappa’ => kappa p)) kappa)

| ...

and phi f = Function’ f

and delta (Function’ f) = f
| delta _ = raise TOP

In order to use the implemented semantics, one needs only to write a program like the following,EXAMPLE

using an implementation of Standard ML:1

(*
* fact = fix (lambda f. lambda n. if n = 0 then 1 else n * f(n-1))
*)

val fact = Fix’("f", Lambda’("n",
If’(BinOp’(Ident’("n"), Equals’, Int’(0)),

Int’(1),
BinOp’(Ident’("n"), Times’,

App’(Ident’("f"), BinOp’(Ident’("n"), Minus’, Int’(1)))))))

(*
* Evaluate the expression "fact 7" using the semantics of PFLC
*)

val main = semP (App’(fact, Int’(7)))

This program calculates the factorial of 7, using a recursive definition. The result of the evaluation of
“main” is the value “Basic’ (Number’ 5040)”.

15.2.2 Haskell and related languages

Haskell belongs to the family of strongly-typed lazy purely functional languages [Huda96, Pete97].THE

LANGUAGE Its popularity increases steadily and there are currently many efficient compilers. Haskell provides
non-strict semantics, a static polymorphic type system, algebraic data types, modules, monads and
monadic I/O and a rich system of primitive data types. A variation of Haskell is Gofer, which extends

1 The Standard ML of New Jersey, available from http://cm.bell-labs.com/cm/cs/what/smlnj/, provides
a very good compiler and interpreter for Standard ML. Other good implementations also exist.

15.2. The functional programming paradigm 195

the language by adding type classes with multiple parameters but does not support modules [Jone94].
In this section, the structured approach towards the implementation of the semantics of PFLC is
presented. Of course, the direct approach could also have been used, resulting in a much smaller and
simpler Haskell program of approximately 350 lines (30 for the syntax, 200 lines for the semantics
and 120 lines for parsing and pretty-printing).

The structured translation of the semantics of PFLC is a program of approximately 470 lines. The OVERVIEW

implementation of the abstract syntax requires 35 lines, that of the semantics requires 135 lines and
400 lines are needed for the implementation of the framework for domains. The basic class defined in
this framework is the Domain class:

class Domain a where
(<<=) :: a -> a -> Bool
isBottom :: a -> Bool
bottom :: a
isTop :: a -> Bool
top :: a

where operator <<= represents the domain ordering. Notice that for bottom and top elements two
members are needed: one for accessing these elements and one for checking if a given element is
bottom or top. This is necessary since in general Haskell types do not provide an equality operator.

Domain constructors produce instances of the Domain class, like the ones defined below. Notice DOMAIN CON-
STRUCTORSthat domain ordering for functions is not computable and that flat domains are based on equality types.

-- Function domains

instance (Domain a, Domain b) => Domain (a -> b) where
f <<= g = error "Cannot compare functions with <<="
isBottom f = error "Cannot compare function to bottom"
bottom = \a -> bottom
isTop f = error "Cannot compare function to top"
top = \a -> top

-- Product domains

instance (Domain a, Domain b) => Domain (a, b) where
(x1, x2) <<= (y1, y2) = (x1 <<= y1) && (x2 <<= y2)
isBottom (x, y) = isBottom x && isBottom y
bottom = (bottom, bottom)
isTop (x, y) = isTop x && isTop y
top = (top, top)

-- Flat domains

data (Eq a) => FlatDomain a = FlatBottom | FlatElement a | FlatTop

instance (Eq a) => Domain (FlatDomain a) where
FlatBottom <<= _ = True
(FlatElement x) <<= (FlatElement y) = x == y
_ <<= FlatTop = True
_ <<= _ = False
isBottom FlatBottom = True
isBottom _ = False
bottom = FlatBottom
isTop FlatTop = True

196 Chapter 15. Implementation

isTop _ = False
top = FlatTop

-- Coalesced sums

data SumDomain a b = SumBottom | SumLeft a | SumRight b | SumTop

instance (Domain a, Domain b) => Domain (SumDomain a b) where
SumBottom <<= _ = True
(SumLeft x) <<= (SumLeft y) = x <<= y
(SumRight x) <<= (SumRight y) = x <<= y
_ <<= SumTop = True
_ <<= _ = False
isBottom SumBottom = True
isBottom _ = False
bottom = SumBottom
isTop SumTop = True
isTop _ = False
top = SumTop

Special operations for some types of domains may also be required, as in the case of coalescedSPECIAL

OPERATIONS sums. Functions inl and inr are used to insert of elements in the coalesced sums, whereas functions
outl and outr are used to extract elements.

inl :: (Domain a, Domain b) => a -> SumDomain a b
inl x = if isBottom x then SumBottom else

if isTop x then SumTop else SumLeft x

inr :: (Domain a, Domain b) => b -> SumDomain a b
inr x = if isBottom x then SumBottom else

if isTop x then SumTop else SumRight x

outl :: (Domain a, Domain b) => SumDomain a b -> a
outl (SumLeft x) = x
outl (SumRight x) = top
outl SumBottom = bottom
outl SumTop = top

outr :: (Domain a, Domain b) => SumDomain a b -> b
outr (SumLeft x) = top
outr (SumRight x) = x
outr SumBottom = bottom
outr SumTop = top

Because Haskell is a lazy language, the least fixed point operator can be defined in a very simpleLEAST FIXED

POINTS way, according to its equational property. Its type is the most general that can be achieved. The
requirement “Domain a” is not really necessary.

fix :: (Domain a) => (a -> a) -> a
fix f = f (fix f)

The abstract syntax of PFLC as defined in Haskell is very similar to the definition for Standard MLABSTRACT

SYNTAX that was given in the previous section. The same convention with prime symbols for data constructors
holds. A small excerpt is given below:

15.2. The functional programming paradigm 197

data Expr =
Int’ Int

| True’
| False’
| Ident’ String
| BinOp’ (Expr, BinOp, Expr)
| UnOp’ (UnOp, Expr)
| If’ (Expr, Expr, Expr)
| Lambda’ (String, Expr)
| App’ (Expr, Expr)
| Fix’ (String, Expr)
| Abort’ Expr
| CallCC’ Expr
| Prompt’ Expr

The definition for the semantic domains deviates slightly from the corresponding definition in SEMANTIC

DOMAINSStandard ML. The framework for representing domains is used here, and the auxiliary domains T and
N are defined as flat domains. The mutual recursion needs not be eliminated in the case of Haskell.
However, Haskell does not allow mutual recursion on type synonyms, and this is the reason why
the newtype declaration is needed, in the case of V. The newly defined type must also be made an
instance of class Domain and an additional data constructor must be used.

type T = FlatDomain Bool
type N = FlatDomain Int

type B = SumDomain N T
type F = LiftedDomain (V -> K -> V)
newtype V = V’ (SumDomain B F)
type Env = Ide -> V
type K = V -> V

instance Domain V where
(V’ x) <<= (V’ y) = x <<= y
isBottom (V’ x) = isBottom x
bottom = V’ bottom
isTop (V’ x) = isTop x
top = V’ top

In order to avoid using a series of insert and extract operations for coalesced sum domains, a
number of more abstract such operations are defined. Examples are inBV and outVB that are defined
below:

inBV :: B -> V
inBV = V . inl

outVB :: V -> B
outVB (V x) = outl x

The semantic equations are translated almost directly from the meta-language to Haskell. The SEMANTICS

small deviations are due to the notation for flat domains and coalesced sums. As far as coalesced sums
are concerned, it is important to remember that the omission of explicit insertors and extractors, e.g.
inl and outl , from the meta-language is a notational convention. The operators should normally be
there. An excerpt of the definition of the semantics of PFLC in Haskell is given below:

198 Chapter 15. Implementation

semP :: Expr -> V
semP expr = semE expr (\i -> top) id

semE :: Expr -> Env -> K -> V
semE (Int’ x) rho kappa = kappa (inNV (FlatElement x))
semE True’ rho kappa = kappa (inTV (FlatElement True))
semE (Ident’ i) rho kappa = kappa (rho (FlatElement i))
semE (If’ (expr, expr1, expr2)) rho kappa =
semE expr rho (\e ->

nif (outVT e) (semE expr1 rho kappa, semE expr2 rho kappa))
semE (App’ (expr1, expr2)) rho kappa =

semE expr1 rho (\e1 -> semE expr2 rho (\e2 -> delta e1 e2 kappa))
semE (Abort’ expr) rho kappa = semE expr rho id
semE (CallCC’ expr) rho kappa =

semE expr rho (\e -> delta e (phi (\p -> \kappa’ -> kappa p)) kappa)
...

phi :: (V -> K -> V) -> V
phi f = inFV (up (strict_D f))

delta :: V -> V -> K -> V
delta x = down (outVF x)

The implemented semantics can be used for the evaluation of the same program that recursivelyEXAMPLE

calculates the factorial of 7. The program is given below, and its result, ignoring the presence of the
trivial data constructor V’, is the value inl(inl(5040)).

-- fact = fix (lambda f. lambda n. if n = 0 then 1 else n * f(n-1))

fact :: Expr
fact = Fix’("f", Lambda’("n",

If’(BinOp’(Ident’("n"), Equals’, Int’(0)),
Int’(1),
BinOp’(Ident’("n"), Times’,

App’(Ident’("f"), BinOp’(Ident’("n"), Minus’, Int’(1)))))))

-- Evaluate the expression "fact 7" using the semantics of PFLC

main = semP (App’(fact, Int’(7)))

15.3 The object-oriented paradigm

In this section, the object-oriented programming paradigm is applied to the problem of implementingC++ IS NOT

FUNCTIONAL denotational descriptions and C++ is suggested as the target implementation language. The results of
this research have been presented in [Papa96a] and [Papa96b]. It is clear that C++ is not a natural
choice for this problem domain, lacking lexical closures, expressible functions and fully operational
high-order functions. However, it is shown that object-orientation is a useful tool in this problem
domain and some of the many difficulties imposed by C++ are overcome.

In the rest of this section, an object-oriented framework is suggested in several versions, provid-
ing a type-safe implementation for the � -calculus over Scott domains. However, it is clear that the
achieved results are not as elegant, nor as efficient in terms of execution time as those of a possible
implementation in a more suitable language, such as ML. It is also clear that the presence of features
such as high-order functions, currying, partial binding and the � -notation determines the suitability

15.3. The object-oriented paradigm 199

of a programming language for implementing denotational descriptions. Such features are inherent in
the functional programming paradigm, and this partly explains why ML is a more appropriate choice
in this problem domain.

In order to overcome the drawbacks of C++, an attempt is made to integrate such features in
the proposed framework. However, in contrast to other approaches towards the same goal [Rose92,
Klag93, Sarg93, Dami94, Watt94, Kuhn95, Lauf95, Rams95], the integration suggested here does not
require any extensions to the language. Unfortunately, there is a tradeoff between natural description
using pure C++ and performance. This dilemma is resolved in this section at the expense of perfor-
mance, on the grounds that implementations of denotational descriptions are commonly used for the
study of programming languages, in a context where performance is of little importance.

Further analysis of the problem’s requirements, inspired by techniques of object-oriented analysis USING C++

and design, leads to the following remarks:

� Domains should be represented by classes, whose objects would represent elements, encapsu-
lating data and operations.

� Representing compound domains (i.e. domains of functions, products, lifted domains, etc.) by
class templates, parameterized by the type of their components seems to be a very appropriate
choice. By proper representation of operators over such domains by function templates, it is
possible to create a type-safe framework for element expressions. Furthermore, in this way it is
possible to overcome the shortcoming of C++ as far as high-order functions are concerned.

� It does not seem necessary to treat syntactic domains in a different way. However, expressing
syntactic domains by using products and sums complicates the implementation of semantic
equations. It might be more appropriate to implement a special coalesced sum domain for the
representation of syntactic domains.

� In order to naturally represent � -abstractions, it is necessary to find a way of expressing un-
named functions. The definition of a C++ function for each use of the � -abstraction cannot
be considered a natural choice. For the expression of binding variables in abstractions, lack of
lexical closures in C++ expressions must be overcome.

In Section 15.3.1 an untyped version of the framework is presented, implementing an untyped SECTION

OVERVIEWversion of the meta-language. In Section 15.3.2 the same framework is extended by the introduction
of types to the meta-language, and the use of templates is exploited to make it type-safe. Section 15.3.3
describes an elementary preprocessor that can be used as a front end to overcome the lack of function
closures. In Section 15.3.4 several extensions to C++ are considered, that would be beneficial for the
implementation of denotational semantics, and a last version of the suggested framework is presented,
using the GNU C++ extensions. In Section 15.3.5 the full example is given and discussed. Finally,
Section 15.3.6 summarizes and evaluates the results of this approach.

15.3.1 Untyped version

The first implementation in C++ to be considered is for an untyped version of the meta-language. ENVELOPES

The envelope / letter idiom [Copl92] is used, in order to achieve method polymorphism and at the
same time alleviate the memory-management problems that result from the use of object pointers. An
envelope class is used for the representation of Scott domain elements, whereas several letter classes

200 Chapter 15. Implementation

are used for the representation of various operations on such elements. The envelope class Element
is defined as:

class Element {
private:

ElementImpl * const impl;

public:
Element (ElementImpl * const ei) : impl(ei) { }
Element (const Element & e) : impl(e.impl->copy()) { }
˜Element () { delete impl; }

Element operator () (const Element & arg) const {
return Element(new ApplicationImpl(impl, arg.impl));

}

friend Element lambda (const Element & exp) {
return Element(new AbstractionImpl(exp.impl));

}

friend Element arg (int db) {
return Element(new ParameterImpl(db));

}

friend Element fix (const Element & exp) {
return Element(new FixImpl(exp.impl));

}

...

friend Element evaluate (const Element & e) {
return Element(e.impl->evaluate());

}
};

where functions lambda and arg are used for the creation of � -abstraction elements, operator
() is used for the creation of function applications and function fix is used for the implementation of
the least fixed point operator. In addition, method evaluate is used for the evaluation of elements,
by using evaluation rules of � -calculus over Scott domains.

A set of letter classes are used for element implementations, derived from the abstract letter classLETTERS

ElementImpl. In order to differentiate between implementation classes in run-time, a dynamic
type casting mechanism is required. Although run-time type inference (RTTI) has long been sug-
gested as part of the proposed C++ standard, it is not generally supported by compilers, at least in
a portable manner. For this reason, a custom version of RTTI is used here, which defines a virtual
whatIs method and a static isMembermethod for all concrete classes. The definition of these two
is facilitated by using two special macros:

#define RTTI_ABSTRACT \
public: \

virtual const char * whatIs () const = 0;

#define RTTI_SIGNATURE(AbstractType, sig) \
public: \

virtual const char * whatIs () const { return sig; } \
static int isMember (const AbstractType & x) \

{ return strcmp(x.whatIs(), sig) == 0; }

15.3. The object-oriented paradigm 201

where string signatures are used for clarity, instead of defining a special enumeration for classes.

Class ElementImpl is defined as:

class ElementImpl {
RTTI_ABSTRACT

public:
ElementImpl () { }

virtual ˜ElementImpl () { }
virtual ElementImpl * copy () const = 0;
virtual ElementImpl * subst (int db, const ElementImpl * val) const = 0;
virtual ElementImpl * incFV (int t = 0) const = 0;
virtual ElementImpl * evaluate () const = 0;

};

where method copy implements the duplication of an object, method subst is used for textual
substitution, method incFVwill be explained later and method evaluate is used for the evaluation
of elements.

Concrete letter classes can be defined for the implementation of domain operations, such as � -
abstractions, function applications or the fix operator. A letter class must be defined for bottom ele-
ments. Furthermore, a letter class must be defined for the implementation of function parameters. For
this purpose De Bruijn indices are used instead of named dummies [dBru72].2 De Bruijn indices fa-
cilitate the definition and implementation of textual substitution. Of the aforementioned letter classes,
AbstractionImpl can be defined as:

class AbstractionImpl: public ElementImpl {
RTTI_SIGNATURE(ElementImpl, "AbstractionImpl")

private:
ElementImpl * const expression;

public:
AbstractionImpl (const ElementImpl * exp): expression(exp->copy()) { }

virtual ˜AbstractionImpl () { delete expression; }

virtual ElementImpl * copy () const;
virtual ElementImpl * subst (int db, const ElementImpl * val) const;
virtual ElementImpl * incFV (int t = 0);
virtual ElementImpl * evaluate ();

ElementImpl * AbstractionImpl::apply (const ElementImpl * arg) const;
};

Methods evaluate and subst must be implemented according to a set of evaluation rules for EVALUATION

RULESthe meta-language. Various evaluation strategies are possible and the strategy that is adopted here uses
left-most reduction and call-by-value function application. A subset of the evaluation rules that are
used is given in Figure 15.2. These rules correspond to the subset of the meta-language containing � -
abstractions, function applications and the fix operator. The notation � � � represents the evaluation
relation and is read as “ � evaluates to � ”, whereas � �� � �
 � � denotes textual substitution and is
read as “ � where dummy � is substituted with � ”. Method incFV implements the adjustment of
De Bruijn indices, that is necessary for substituting within � -abstractions.

2 De Bruijn indices are denoted as � � , where � � + .

202 Chapter 15. Implementation

Figure 15.2: A subset of the evaluation rules for the meta-language with De Bruijn indices.

Evaluation of terms.

� � � � �
� � � � � ��� � � � + � � �*������ � ���

� � � � � � � + � � fix � � ���
fix � ���

Textual substitution.
� � �

� � � � ��� � � � � �
� � �

� � � � ��� � � � � � �
�
�,�

� � � � � � � � � � � � � � + �
IFV � � � � � � ! � � � � �),+ � � � � ! � � �� � � � � � � � � � � � � �

� � � � � � � � � � � !� � � � � � � � � � � � !�� � � � � � � � � � � � � � � !� � !�

Adjustment of De Bruijn indices.

��� �
IFV � � � � � � � � �),+ � �� �

IFV � � � � � � � �
IFV � � �),+ � � � !
IFV � � � � � � � � !

IFV � � � � � � � !� IFV � � � � � � � !�
IFV � � � � � � � � � !� � !�

For example, the implementation of some of these methods for the letter classes that were previ-
ously mentioned is given below:

ElementImpl * ApplicationImpl::evaluate () const {
ElementImpl * eFun = function->evaluate();
ElementImpl * eArg = argument->evaluate();
ElementImpl * result = (AbstractionImpl::isMember(*eFun))

? ((const AbstractionImpl *) eFun)->apply(arg)
: new BottomImpl();

delete eFun;
delete eArg;
return result;

}

ElementImpl * FixImpl::evaluate () const {
ElementImpl * eExp = expression->evaluate();
ElementImpl * result = (AbstractionImpl::isMember(*eExp))

? ((const AbstractionImpl *) eExp)->apply(this)
: new BottomImpl();

delete eExp;
return result;

}

ElementImpl * AbstractionImpl::apply (const ElementImpl * arg) const {
ElementImpl * applied = expression->subst(1, arg);
ElementImpl * result = applied->evaluate();

15.3. The object-oriented paradigm 203

delete applied;
return result;

}

ElementImpl * AbstractionImpl::subst (int db, const ElementImpl * val) const {
ElementImpl * fVal = val->incFV();
ElementImpl * sExp = expression->subst(db+1, fVal);
ElementImpl * result = new AbstractionImpl(sExp);

delete fVal;
delete sExp;
return result;

}

ElementImpl * ParameterImpl::incFV (int t) const {
return new ParameterImpl(deBruijn > t ? deBruijn+1 : deBruijn);

}

As an example, consider the expression � � � � � � � � � � � � � ��� � � � , which evaluates to � � . This EXAMPLE

expression is written as � � � � � � � � � � � � � � � , when using De Bruijn indices. The evaluation of this
expression is performed by the following C++ code:

Element x = lambda(lambda(arg(2)(arg(1))))(lambda(arg(1)))(Integer(42));
cout << x.evaluate() << endl;

where it is assumed that a class Integer has been derived from Element, an implementation for
integer numbers has been written, as well as an operator << for printing elements. Note that,
although the evaluated element contains an implementation for the integer number � � , its type is
Element and not Integer, as it would be expected. This is due to the untypedness of this version
of the framework and is corrected in the next section.

At this point, a few remarks are made about the suggested framework. REMARKS

� A term of the meta-language is represented by elements whose implementations follow the
term’s structure. Functions are implemented as objects of the class AbstractionImpl and
can be directly expressed in a fairly natural way without defining functions. However, terms of
the meta-language can only be evaluated at run-time by explicit calls to method evaluate.
No optimizations can be made at compile-time, in contrast to possible implementations in func-
tional languages such as ML.

� It is possible to improve the efficiency of the framework by implementing part of the evalu-
ation process in element constructors, such as lambda and operator (). In this way, it
is possible to reduce the size of element implementations. An improved framework contains
a simplify method for element implementations, which performs all possible evaluations
without evaluating least fixed point operations. Thus, invocation of this method will always
terminate, something which is not true for method evaluate.

� The memory management scheme for element implementations results in a heavy use of op-
erators new and delete. By overloading these operators and by changing accordingly the
copy method, it is possible to implement a smarter memory management scheme that would
not copy element implementations when not necessary (e.g. by keeping reference counters).
Better results can be achieved by using a proper garbage collector for C++.

204 Chapter 15. Implementation

Boolean

Function<In,Out>

Lifted<T>

Product<T1,T2>

Sum<T1,T2>

Atom

Integer

SProduct<T1,T2>

CSum<T1,T2>

Element

BottomImpl

BooleanImpl

LiftedImpl

AbstractionImpl

StrictImpl

UpdateImpl

ProductImpl

SumImpl

AtomImpl

IntegerImpl

CSumImpl

SProductImpl

ParameterImpl

ApplicationImpl

FixImpl

ConditionalImpl

DownImpl

FstImpl

SndImpl

OutlImpl

OutrImpl

IslImpl

IsrImpl

BinaryOperatorImpl<I1,I2,IR>

UnaryOperatorImpl<I,IR>

ElementImpl ValueImpl

FunctionImpl

Hierarchy of implementations
(letter classes)

(envelope classes)
Hierarchy of elements

Figure 15.3: Class hierarchies for domain elements and implementations.

15.3.2 Type-safe version

Although the untyped version the framework succeeds in implementing the numerous operations onTYPE SAFETY

Scott domains in a fairly natural way, it fails to represent the Scott domains themselves. As an attempt
to provide the elements with type information, it is possible to derive classes from Element but
operations on such elements do not propagate the type information. Furthermore, the untyped version
is only able to diagnose semantic errors in element expressions (such as application of an argument to
an element that is not a function) at run-time.

It is possible to create a type-safe version of the framework, implementing a typed version of the
meta-language. This version represents Scott domains as classes derived from Element, assigns type
information to elements and propagates this type information correctly and consistently in operations.
In addition, it is able to detect type errors at compile-time, by using the type system of C++. A set of
classes and class templates are derived from Element, as shown in Figure 15.3. The various class
templates represent domain constructors and are parameterized by the types of their operands. The
same figure also shows the complete hierarchy of implementations.

In the type-safe version, functions such as evaluate must be replaced by function templates,TEMPLATES

propagating the correct type information. The definition of evaluate becomes:

template<class T>
T evaluate (const T & e) {

return T(e.getImplementation()->evaluate());
}

The class template Function<In, Out> represents function domains. It is defined as:

15.3. The object-oriented paradigm 205

#define FUN(In, Out) Function< In, Out >

template<class In, class Out>
class Function : public Element {

public:
Function (ElementImpl * ei) : Element(ei) { }
Function (const Function<In, Out> & f) : Element(f) { }
Out operator () (const In & arg) const;

};

and the corresponding domain operators, that is function application and the least fixed point operator,
are defined as:

template<class In, class Out>
Out Function<In, Out>::operator () (const In & arg) const {

return Out(new ApplicationImpl(getImplementation(), arg.getImplementation()));
}

template<class In, class Out>
FUN(In, Out) fix (const FUN(FUN(In, Out), FUN(In, Out)) & exp) {

return FUN(In, Out)(new FixImpl(exp.getImplementation()));
}

In the typed version of � -notation it is necessary to specify the type of the parameter. Also, in order TYPES OF

PARAMETERSto make the framework type-safe, it is also necessary to explicitly specify the type of each parameter’s
instance, since the C++ compiler cannot deduce the type of an expression such as arg(1). This is a
possible source of errors, since there is no way of checking whether the types of parameter instances
are consistent with the types specified in the corresponding � -expressions. Therefore, the � -notation
that is used in the type-safe version is not as simple as that of the untyped one. The two macros
lambda and arg hide the ugly implementation details from the user. The use of operator |= for
the implementation of lambda is justified because this operator is right associative and has a very low
precedence. An empty class template has to be defined (LambdaOperator<In>) just to provide
the parameter’s type to operator |=.

#define lambda(T) (LambdaOperator< T >(0)) |=
#define arg(T, n) (T(new ParameterImpl(n)))

template<class In>
class LambdaOperator {

public:
LambdaOperator (int) { }

};

template<class In, class Out>
FUN(In, Out) operator |= (const LambdaOperator<In> & l, const Out & exp) {

return FUN(In, Out)(new AbstractionImpl(exp.getImplementation()));
}

As an example, consider again the expression � � � � � � � � � � ��� � � � � � � � � � � � � � � , EXAMPLE

which evaluates to � � . This expression is written as � �
�����

�
�

� � � � � � �
�

� � � � � , in the typed
meta-language, using De Bruijn indices. Note that the type of each parameter’s instance is determined
by the type specified by the corresponding � -notation. The evaluation of this expression is performed
by the following C++ code. The evaluated element is of the expected type Integer.

206 Chapter 15. Implementation

Integer x = (lambda(FUN(Integer, Integer)) lambda(Integer)
arg(FUN(Integer, Integer), 2)(arg(Integer, 1)))

(lambda(Integer) arg(Integer, 1))
(Integer(42));

cout << x.evaluate() << endl;

It should be noted at this point that two problems still remain in the type-safe version of theREMARKS

framework. Both are due to the type system of C++:

� Type unification in templates does not work as expected in some compilers. In GNU C++, for
instance, type unification fails when the formal parameter is a (reference to a) class template
and the actual parameter is a subclass of the class template. The same type unification succeeds
in Borland C++.3

� It is difficult to define recursive domains, such as � ���
�
 � � � � ���
��� � � � � � . The obvious
definition would be something like:

class Tree;
typedef SUM(Integer, PROD(Tree, Tree)) Tree;

only this does not work, neither in GNU C++ nor in Borland C++. It seems that the only way to
overcome this problem is the following definition, which is problematic because of the previous
remark:

class Tree : public SUM(Integer, PROD(Tree, Tree))
{

public:
Tree (const SUM(Integer, PROD(Tree, Tree)) & t) :

SUM(Integer, PROD(Tree, Tree))(t) { }
};

15.3.3 Preprocessor

The framework that has been suggested in the previous section is capable of expressing denotationalNEED FOR

PREPROCES-
SOR

descriptions in a fairly natural way. However, element expressions contain redundant information
and this is a possible source of errors. The redundant information is the type of parameter instances.
Consider the expression � � ��� � � � � ��� � � � � , which is written as:

lambda(Integer) (lambda(Integer) arg(Integer, 1))(arg(Integer, 1))

There are two difficulties with the representation of such an expression: (i) named dummies in � -
abstractions have to be replaced by De Bruijn indices, and (ii) the types of parameter instances have to
be explicitly specified, although this information is redundant. The former is a matter of choice, sim-
plifying the framework and improving its performance; on the other hand, named dummies provide a
more natural way of representing � -abstractions. The latter, however, is a problem of the implemen-
tation, due to the choice of C++ as the implementation language.

15.3. The object-oriented paradigm 207

After a couple of unsuccessful attempts to overcome these two difficulties by using the C++ pre- PREPROCES-
SORprocessor, it seems that this is not possible, because C++ lacks lexical closures and variable scoping

within expressions.4 It is possible, however, to implement an external preprocessor for the conversion
of � -notations with named dummies to De Bruijn indices and explicitly typed parameter instances.
The complete code of such a preprocessor is given below. It consists of 42 lines of flex code and 124
lines of bison code, including full error handling, and correctly translates the extensions used in a
program, ignoring all the rest. The implementation of the preprocessor is elementary and a total of 8
tokens and 4 nonterminal symbols are used.

Lexical analyzer (preproc.l)

%{
#include <string.h>

#define YYSTYPE char *
#include "preproc.tab.h"

#define COPY do { yylval = strdup(yytext); } while(0)
#define MORE yymore()
#define NL (lineNo++)

int lineNo = 1;
%}

%x COMMENT STRING PREPROC

%%

"lambda" { return TK_LAMBDA; }
[\(\)\.:] { return yytext[0]; }

"/*" { MORE; BEGIN(COMMENT); }
<COMMENT>[ˆ*\n]+ { MORE; }
<COMMENT>\n+ { MORE; NL; }
<COMMENT>"*"+[ˆ*/\n] { MORE; }
<COMMENT>"*"+\n { MORE; NL; }
<COMMENT>"*"+"/" { COPY; BEGIN(INITIAL); return TK_WHITE; }
"//"[ˆ\n]*\n { COPY; NL; return TK_WHITE; }

\" { MORE; BEGIN(STRING); }
<STRING>[ˆ"\\\n]+ { MORE; }
<STRING>\\. { MORE; }
<STRING>\" { COPY; BEGIN(INITIAL); return TK_OTHER; }

ˆ[\t]*# { MORE; BEGIN(PREPROC); }
<PREPROC>[ˆ\\\n]+ { MORE; }
<PREPROC>\\. { MORE; }
<PREPROC>\\\n { MORE; NL; }
<PREPROC>\n { COPY; NL; BEGIN(INITIAL); return TK_OTHER; }

[A-Za-z0-9_]+ { COPY; return TK_ID; }
[\t]+ { COPY; return TK_WHITE; }
\n { COPY; NL; return TK_WHITE; }

3 It is hoped that the emergence of the standard for C++ will eliminate this kind of problems.
4 See section 15.3.4 for an implementation using the set of GNU C++ extensions.

208 Chapter 15. Implementation

. { COPY; return TK_OTHER; }

%%

Parser (preproc.y)

%{
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define YYSTYPE char *

struct stack {
char * name;
char * type;
struct stack * next;

};

struct stack * dummies = NULL;

void push (struct stack ** s, char * name, char * type) {
struct stack * node = (struct stack *) (malloc(sizeof(struct stack)));

node->name = name;
node->type = type;
node->next = *s;
*s = node;

}

void pop (struct stack ** s) {
struct stack * node = *s;

assert(node != NULL);
*s = node->next;
free(node->name);
free(node->type);
free(node);

}

void search (struct stack * s, const char * name) {
int i;

for (i = 1 ; s != NULL ; i++) {
if (strcmp(s->name, name) == 0) {

printf("ARG(%s, %d)", s->type, i);
return;

}
s = s->next;

}
printf("%s", name);

}
%}

%token TK_ID, TK_LAMBDA, TK_OTHER, TK_WHITE

%%

15.3. The object-oriented paradigm 209

expression:
expression ’(’ { printf("("); } expression ’)’ { printf(")"); }

| expression lambda
| expression ’:’ { printf(":"); }
| expression ’.’ { printf("."); }
| expression TK_ID { search(dummies, $2); free($2); }
| expression TK_OTHER { printf("%s", $2); free($2); }
| expression TK_WHITE { printf("%s", $2); free($2); }
| /* empty */
;

lambda:
TK_LAMBDA white ’(’ white TK_ID white ’:’ type ’.’ {

printf("LAMBDA(%s)(", $8);
push(&dummies, $5, $8);
free($2); free($4); free($6);

}
expression ’)’ {

printf(")");
pop(&dummies);

}
;

type:
type ’(’ type ’)’ {

$$ = (char *) (malloc(strlen($1) + strlen($3) + 3));
strcpy($$, $1); free($1); strcat($$, "(");
strcat($$, $3); free($3); strcat($$, ")");

}
| type TK_ID {

$$ = (char *) (malloc(strlen($1) + strlen($2) + 1));
strcpy($$, $1); free($1);
strcat($$, $2); free($2);

}
| type TK_OTHER {

$$ = (char *) (malloc(strlen($1) + strlen($2) + 1));
strcpy($$, $1); free($1);
strcat($$, $2); free($2);

}
| type TK_WHITE {

$$ = (char *) (malloc(strlen($1) + 2));
strcpy($$, $1); free($1);
strcat($$, " "); free($2);

}
| /* empty */ {

$$ = (char *) (malloc(1));
*($$) = ’\0’;

}
;

white:
white TK_WHITE {

$$ = (char *) (malloc(strlen($1) + strlen($2) + 1));
strcpy($$, $1); free($1);
strcat($$, $2); free($2);

}

210 Chapter 15. Implementation

| /* empty */ {
$$ = (char *) (malloc(1));
*($$) = ’\0’;

}
;

%%

int yyerror (const char * s) {
extern int lineNo;

fprintf(stderr, "line %d: %s\n", lineNo, s);
abort();

}

int main () { return yyparse(); }

By using the preprocessor, element expression � � � � � � � ��� � � � ��� can be written as:EXAMPLE

lambda(x : Integer. lambda(y : Integer. y)(x))

No redundant information is given and this notation is much clearer and more natural than the one
given in the beginning of this section.

15.3.4 Extensions

It is possible to enhance the object-oriented framework for the implementation of denotational seman-GNU
EXTENSIONS tics by using a set of extensions to C++. The set of GNU extensions even makes the preprocessor

unnecessary, without affecting the readability of element expressions. Two extensions that are partic-
ularly useful are:

� Statement expressions: compound statements within parentheses can appear within expressions.
The last statement in the compound statement determines the value of the whole construct. This
extension is particularly useful because it allows the definition of new scopes for variables inside
expressions.

� Operator typeof : a compile-time operator, referring to the type of an expression, which is never
evaluated. It can be used in any type expression and is very useful in combination with statement
expressions.

The first and obvious improvement to the framework, using the two GNU extensions that wereNAMED

DUMMIES mentioned above, is that the meta-language can now use named dummies instead of De Bruijn indices
in � -abstractions. The set of evaluation rules must be revised and a subset of the new evaluation
rules is given in Figure 15.4. The only point that needs special treatment is textual substitution in

� -abstractions. It is resolved by the renaming dummies whenever necessary.

A second important improvement is that a class template for domains themselves can be defined,DOMAIN CON-
STRUCTORS namely Domain<E>, in addition to classes for domain elements. This allows the modelling of do-

main constructors as C++ operators, and the use of such domain expressions in element expressions,
whenever this is required. The type parameter E that is used in this class template represents the type
of domain elements. It is then possible to define:

15.3. The object-oriented paradigm 211

Figure 15.4: A subset of the evaluation rules for the meta-language with named dummies.

Evaluation of terms.

� � � � � � � � �
� � � � � � � ��� � � � � � � � ���� � ���

� � � � � � � � � � � fix � � ���
fix � ���

Textual substitution.
� � � !� ! � � � � � � � �

� �� � !� ! � � � � � � � � !
� � � � � � � � � � ! � � � � � � � � � � � !�� � � � � � � � � � � � � � !� � !�

� � � !� � � ! � � � � � � � � � � � � ! � �
� �� � ! � ! �� FV � � � � � � � � � � � �� � � ! � � � � � � � � � � � � ! � �

� �� � ! � ! � FV � � � � � � ! � � � ! ! � � � � � � � � � � ! ! : new dummy� � � ! � � � � � � � � � � � � ! ! � �

Free variables.

FV � � � � � � � FV � � � ���
FV � � � � � � ��� � � � � FV � � � � ��� � FV � � � � ��� �

FV � � � � � � ��� � � � �

Domain<Integer> N;
Domain<Boolean> T;

The class template Domain<E> is defined as:

template<class E>
class Domain {

public:
Domain () { }
E * nullInstance () const { return NULL; }
E bottomInstance () const { return E(new BottomImpl()); }
E operator () (const E & e) { return e; }

};

#define bottom(T) ((T).bottomInstance())

template<class E1, class E2>
Domain<FUN(E1, E2)> operator |= (const Domain<E1> & d1, const Domain<E2> & d2) {

return Domain<FUN(E1, E2)>;
}

template<class E1, class E2>
Domain<PROD(E1, E2)> operator * (const Domain<E1> & d1, const Domain<E2> & d2) {

return Domain<PROD(E1, E2)>;
}

#define OBJ(T) typeof(*((T).nullInstance()))

212 Chapter 15. Implementation

where operator |= and operator * represent respectively the domain constructors for func-
tions and products and operator () simplifies the expression of domain elements, allowing ex-
pressions such as N(42). The macro bottom returns the bottom element of a domain, whereas the
macro OBJ(T) returns the type of a given domain’s element. Finally, the � -notation can be imple-
mented as:5

#define lambda(v, T, E) (lambdaOperator(#v, T, \
({ OBJ(T) v(new ParameterImpl(#v)); \

new typeof(E)(E); })))

template<class In, class Out>
FUN(In, Out) lambdaOperator (const char * dummy, const Domain<In> &, Out * exp) {

FUN(In, Out) result(new AbstractionImpl(dummy, exp->getImplementation()));

delete exp;
return result;

}

As an example, consider again the expression � � ��� � � � � � � � � � � � � � � � �"� � � � � � . ThisEXAMPLE

time, the evaluation of this expression is performed by the following C++ code:

OBJ(N) x = (lambda(x, N|=N, lambda(y, N, x(y))))(lambda(x, N, x))(N(42))
cout << x.evaluate() << endl;

A third possible extension, the presence of which would change the framework radically, is un-ADDITIONAL

EXTENSIONS named functions as suggested in [Breu88]. Unnamed functions would render unnecessary the defini-
tion of a special class for � -abstractions and would much simplify the hierarchy of implementations.
They would significantly narrow the gap between C++ and functional languages. Unfortunately, un-
named functions have not been adopted, to the best of the author’s knowledge, in any popular C++
compiler, although their implementation does not seem particularly problematic.

15.3.5 Example

An interpreter for PFLC, based on the denotational semantics of Section 15.1 has been developed inTHE PROGRAM

three variations, using the type-safe framework with De Bruijn indices, the custom preprocessor and
the framework based on GNU extensions. In all cases, the framework itself was implemented in a
header file of approximately 3,000 lines. The size of the programs that implement the semantics of
PFLC in the three cases do not differ significantly. Execution time is the same for the first two cases,
and it slightly increases in the third case.

The program consisted of approximately 1,000 lines of code, including a number of test programs.
A significant part of the C++ implementation (approximately 350 lines) was devoted to the implemen-
tation of syntactic domains. It was decided not to use coalesced sums and products for this purpose,
in order to simplify the equations. From this experience, it is now clear that the implementation of
syntactic domains in the suggested framework is inadequate.

The following code is a part of the implementation of PFLC’s semantic equations, in the form thatA FRAGMENT

was suggested in section 15.3.3. Syntactic and semantic domains were defined earlier in the program
and the problem of recursive domains, such as � , was handled by defining empty classes, as discussed
in section 15.3.2.

5 A pointer type for the result of the statement expression had to be used, because of a bug in GNU C++ statement
expressions.

15.3. The object-oriented paradigm 213

V semP (const Expr & E) {
return semE(E) (lambda(I: Ide. BOTTOM(V))) (lambda(e: V. e));

}

FUN(Env, FUN(K, V)) semE (const Expr & E) {
if (E.is("Int’"))

return lambda(rho: Env. lambda(kappa: K.
kappa(V::inl(B::inl(semN(E[1]))))));

else if (E.is("BinOp’")) {
return lambda(rho: Env. lambda(kappa: K.

semBO(E[2])(semE(E[1])(rho))(semE(E[3])(rho))(kappa)));
}

else if (E.is("Lambda’"))
return lambda(rho: Env. lambda(kappa: K.

kappa(phi(lambda(p: V. semE(E[2])(update(rho, E[1], p)))))));

else if (E.is("Fix’"))
return lambda(rho: Env. lambda(kappa: K.

kappa(phi(fix(lambda(w: FUN(V, FUN(K, V)).
delta(semE(E[2])(update(rho, E[1], phi(w)))(lambda(e: V. e)))))))));

else if (E.is("Abort’"))
return lambda(rho: Env. lambda(kappa: K.

semE(E[1])(rho)(lambda(e: V. e))));

...
}

The scheme for accessing syntactic domains (method is and operator []) is a simplification of
the one that was actually used. In fact, this scheme cannot be implemented in a type-safe way without
dynamic type casting in function semE and a hierarchy of class templates for syntactic domains.

Except for the (rather clumsy) implementation of syntactic domains, the implementation of an EVALUATION

interpreter for PFLC by using the suggested framework was entirely successful and demonstrates the
ability of C++ to implement denotational descriptions in a natural way. The performance of the inter-
preter is much lower than the performance of an implementation in a functional language. However,
this was expected since C++ hardly supports the functional programming paradigm, which is so natu-
ral in this problem domain, and performance was sacrificed for ease-of-representation. As discussed
in section 15.3.4, it is believed that the extension of C++ with a single feature (unnamed functions)
would make it possible to achieve a performance comparable to functional languages.

15.3.6 Discussion

The variations of a type-safe framework for the implementation of denotational descriptions in C++
that were suggested in the previous sections exploit the object-oriented programming paradigm. Pure
C++ can be used, although a set of extensions is definitely valuable. The suggested framework could
be translated to other object-oriented languages supporting inheritance, polymorphism and generic
types.

The main criteria in the evaluation of this framework are expressiveness and performance. Con-
cerning the first criterion, the framework provides a natural way of expressing denotational descrip-
tions. Some drawbacks of this approach, imposed by C++, have been already discussed. Compared

214 Chapter 15. Implementation

with other general purpose programming languages that have been suggested for the same purpose,
this framework is inferior to implementations in functional languages. The object-oriented program-
ming paradigm results in more natural denotational descriptions than possible implementations using
imperative programming languages.

Performance issues in the implementation of this framework have been consciously neglected.
Performance is reduced because of three factors:

� The memory management of C++ is poor for the requirements of this problem domain. This
can be alleviated by using a garbage collector and overloading operators new and delete.

� � -abstractions and high-order functions are managed by the programmer instead of the compiler,
resulting in poor optimizations when compared to those that are performed by the compiler of a
functional programming language. This can only be solved by extending C++ with an unnamed
function feature, as discussed earlier.

� A large number of virtual methods is required and their calls reduce performance. This problem
is inherent in the object-oriented programming paradigm with C++.

Nevertheless, performance is not considered to be a very significant factor in the evaluation of the
framework. Implementations of denotational descriptions are mainly used as experimental execution
models for the study of programming languages. In this context, performance is seldom an important
issue.

15.4 Implementation of the proposed semantics for C

A significant effort has been made to evaluate the proposed denotational semantics for the C program-EVALUATION

PROCESS ming language. In this task, the major issue was to assess how complete and accurate the developed
semantics is. Unfortunately, there is no systematic way for such an evaluation, since there is simply
no way to compare a formal system of this complexity against an informal specification, such as the
ANSI C standard. For this reason, an implementation of an interpreter corresponding to the developed
semantics has been tested instead, using some test suites for C implementations that were available.

An earlier version of the developed semantics was first implemented using SML as the targetCHOICE OF

LANGUAGE language. Although that version of the semantics did not use monads, a number of problems were
envountered in the implementation. Later, SML was abandoned and Haskell was used instead, mainly
because it has a richer type system, more flexible syntax, elegant support for monads and also because
lazy evaluation avoids a number of non-termination problems.

The current implementation consists of approximately 15,000 lines of Haskell code, which areCURRENT IM-
PLEMENTATION distributed roughly as follows: 3,000 lines for the static semantics, 3,000 lines for the typing semantics,

5,000 lines for the dynamic semantics, 3,000 lines for parsing and pretty-printing and 1,000 more lines
of general code and code related to testing. As it was expected, the implementation is very slow and
this presents a serious handicap in the yet unfinished evaluation process, significantly limiting the size
of test programs. Although the evaluation of the developed semantics is still under way and minor
bugs are waiting to be fixed, the results indicate that the developed semantics is complete and accurate
to a great extent, with respect to the ANSI C standard.

Chapter 16

Related work

This chapter presents related work in the main research fields that are addressed by this thesis and, CHAPTER

OVERVIEWwhenever applicable, compares it with the present work. Section 16.1 covers the field of defining
the semantics of real programming languages and Section 16.2 specializes in the semantics of the C
programming language. Section 16.3 presentes related work in the use of monads in denotational
semantics. Finally, Section 16.4 briefly outlines related work in the implementation of denotational
semantics.

16.1 Semantics of real programming languages

The semantics of many popular programming languages have been formally specified during the last
30 years. Various formalisms have been used for this purpose. However, in most cases the formaliza-
tions are not complete and features that are hard to formalize are often omitted. Only few real program-
ming languages have been given formal semantics, even incomplete to some extent, as part of their
official definitions. Scheme and ML are probably the only examples of such languages. In the search
for formal specification of real programming languages, the author must greatfully acknowledge the
invaluable help that he has received from the research of Baumann (baumann@ifi.unizh.ch) at
the University of Zürich, who gathered a large number of references to relevant current literature in
1995.1 In the following list of references, attempts to formalize the semantics of C have been omitted,
as they are separately presented in Section 16.2.

� Denotational semantics have been used for the formal specification of:

– Sequential Ada, in the work of Pedersen [Pede80].

– Algol 60 and Pascal, in the work of Bjørner and Jones [Bjor82a, Bjor82b], using the VDM
formalism.

– Scheme, in the work of a large research group, resulting in a publication edited by Clinger
and Rees [Abel91]. The denotational specification is part of the IEEE standard [IEEE91].

– Smalltalk-80, in the work of Wolczko [Wolc87].

� Variations of operational semantics have been used for the specification of:

– Standard ML, as part of the language’s definition by Milner, Tofte and Harper [Miln90,
Miln91, Kahr93], using natural semantics.

1 Unfortunately, the results of this research have now apparently disappeared from the Internet. They were previously
accessible from the URL: http://www.ifi.unizh.ch/groups/baumann/sol.html.

216 Chapter 16. Related work

– Eiffel, in the work of Attali, Caromel and Oudshoorn [Atta93], using again natural seman-
tics.

– Scheme, in the work of Honsell, Pravato and Ronchi della Rocca [Hons95], using struc-
tured operational semantics.

� Axiomatic semantics have been used for the specification of:

– Pascal, in the seminal work of Hoare and Wirth [Hoar73], probably the earliest attempt to
a formal specification of a real programming language.

� Abstract state machines, formerly known as evolving algebras, have been used for the specifi-
cation of large subsets of many languages, including:

– Ada, in the work of Morris and Pottinger [Morr90].

– Cobol, in the work of Vale [Vale93].

– C++, in the work of Wallace [Wall93, Wall95].

– Modula-2, in the work of Gurevich and Morris [Gure88, Morr88].

– Oberon, in the work of Kutter and Pierantonio [Kutt97b, Kutt97a].

– Occam, in the work of Gurevich and Moss [Gure90] and also in that of Börger, Durdanović
and Rosenzweig [Borg94a, Borg96].

– Prolog, in the work of Börger and Rosenzweig [Borg94b].

– Smalltalk, in the work of Blakley [Blak92].

� Finally, action semantics have been used for the formalization of the semantics of:

– Pascal, in the work of Mosses and Watt [Moss93].

– Standard ML, in the work of Watt [Watt87], which was one of the earliest applications of
action semantics.

16.2 Formal semantics of C

Until recently, C has not been a very popular language as far as the formalization of its semantics is
concerned. However, after 1990, significant research has been conducted concerning semantic aspects
of the language, mainly because of its popularity and its wide applications. In general, the majority
of the suggested formalizations focuses on subsets of the language and avoids to address the most
complicated issues, such as side effects in expressions, unspecified evaluation order and sequence
points.

� The earliest formal approach to the semantics of C is given in the work of Sethi, where the
semantics of pre-ANSI C declarations is mainly addressed [Seth80]. This appoach uses denota-
tional semantics and makes a number of simplifications, the most important being a requirement
for left-to-right evaluation of expressions. This work, although largely incomplete with respect
to the ANSI C standard, has significantly influenced the present thesis.

16.2. Formal semantics of C 217

� In a different paper [Seth83], Sethi addresses the semantics of C’s control structures using again
denotational semantics and introducing pipes as a notational variation for combining functions.
This work is part of Sethi’s research in the area of semantics-directed compiling. Left-to-right
evaluation of expressions is again enforced and the declaration of variables is not allowed in
compound statements.

� The work of Gurevich and Huggins defines a formal semantics for C using the formalism of
evolving algebras, or abstract state machines [Gure93b]. However, in a number of cases, the
proposed semantics is not accurate with respect to the standard. The semantics of expression
evaluation is based on two mistaken assumptions: (i) that no interleaving is allowed in the
evaluation of subexpressions, and (ii) that side effects take place at the same time that they are
generated.

� Black and Windley have proposed a high-level axiomatic semantics for programming lan-
guages with side effects in expressions [Blac96]. The semantics is formalized as a set of in-
ference rules for assignments, while loops and function calls. The inference rules distinguish
between pre-evaluation and post-evaluation side effects. Furthermore, an implementation of the
proposed semantics in the HOL theorem prover is used in the same work for the verification
of a secure HTTP daemon, consisting of about 100 lines of C. The proposed semantics is not
complete, with respect to the standard, and in an alltogether different level of abstraction from
the work presented in this thesis.

� In the work of Cook and Subramanian an operational semantics for C is developed in the theo-
rem prover Nqthm [Cook94b, Subr96]. The proposed semantics can be used for the verification
of simple C programs in the theorem prover. However, it is incomplete and inaccurate to a large
extent. Restrictions on C’s type system allow only the type int, arrays of int and functions re-
turning void or int. Only a small subset of C’s control statements is allowed, excluding switch,
do, for and jump statements but return. Furthermore, restrictions on operators are enforced and
left-to-right evaluation order is assumed.

� Cook, Cohen and Redmond have also developed a denotational semantics for C in an unpub-
lished work [Cook94a]. The semantics is based on a temporal logic defined by the authors.
Although left-to-right evaluation is assumed in this work, the authors suggest how this can be
remedied. However, it is not clear whether the suggestion allows for interleaving and there is
no treatment of sequence points.

� An operational semantics for C has been sketched in terms of a random access machine, as a
part of the MATHS project in California State University. The proposed semantics does not
apparently cover declarations and is vague in parts related to the semantics of expressions and
statements. Because of the formalism used by the authors, a comparison of this work to the
present thesis is not easy.

� Finally, the work of Norrish describes an operational semantics for ANSI C, which has been
fully defined in the HOL theorem prover and has been given the name Cholera [Norr97]. The
operational semantics uses small-step reductions and follows the tradition of the formal defini-
tion of SML [Miln90]. A derived axiomatic logic is also developed in the same work as a set of
theorems that can be proved in HOL using the operational model [Norr96]. The axiomatic logic
is useful in verifying properties of C programs

218 Chapter 16. Related work

To the best of the author’s knowledge, the work of Norrish is the only approach that formal-
izes accurately C’s unspecified order of evaluation and sequence points. The language that is
specified by Cholera does not support switch and goto statements, nor string literals. Its type
system lacks qualified types, unions and bit-fields. Moreover, no dynamic memory allocation
is possible and a stack-based memory model is assumed, which is probably a restriction with
respect to the standard.

Overall, the operational semantics of Norrish specifies accurately a language that is a subset of
the one specified in the present thesis. His work follows an alltogether different path towards
the same goal. For this reason, a more thorough comparison of his operational semantics with
the denotational semantics defined here would be beneficial for both ends.

The author of this thesis knows of no other denotational approach to the semantics of the C pro-
gramming language.

16.3 The use of monads in denotational semantics

The concept of monads comes from category theory. Monads have been proposed by Moggi as a
useful structuring tool for denotational semantics [Mogg89, Mogg90]. Moggi demonstrated the use of
monads for representing different aspects of computations, defined monads for programming language
features such as state, exceptions and continuations, and presented call-by-value and call-by-name
semantics for the � -calculus. In a short time, the idea of monads became very popular in the functional
programming community as a way of structuring functional programs and simulate non-functional
features. The work of Wadler [Wadl92, Wadl95b, Wadl95a] played a very important role in this
direction.

In the last few years, research related to the application of monads in denotational semantics
has focused on the combination of monads to structure semantic interpreters. Monad transformers,
which were also first proposed by Moggi [Mogg90] as “holes” inside monads, and other similar con-
structs have attracted the attention of many researchers. In the work of Steele [Stee94], pseudomonads
were proposed as a way of building interpreters out of smaller parts. The first modular interpreter
based on monad transformers was a system with the name Semantic Lego, written in Scheme by Es-
pinosa [Espi95]. In this work Espinosa first raised the issue of lifting, and proposed stratification as
an alternative. In the work of Liang, Hudak and Jones [Lian95b], monad transformers are demon-
strated to succesfully modularize semantic interpreters and the lifting of several monad operations is
investigated.

Powerdomains were first proposed by Plotkin [Plot76] as the domain-theoretic analogue to pow-
ersets. They have been used, in many variations, to model the semantics of programming languages
with non-deterministic features, or parallelism that can be treated in a non-deterministic way. The
convex powerdomain has been proved to be a monad in the category of complete partial orders and
continuous functions [Gunt92]. However, the author of this thesis has not found a complete, clear and
concise definition of this monad and its operations in literature.

The technique of resumptions has been used to model the semantics of interleaved execution
in programming languages. An extensive treatment can be found in the book of de Bakker and de
Vink [dBak96], where many variations of domains for modelling resumptions are defined and their

16.4. Implementation of denotational semantics 219

properties are explored.2 In this work, a family of similar domains is defined including a domain for
resumptions over a direct semantics which satisfies the isomorphism 	�� � � � � � � � � � 	 � � ,
where � is a powerdomain constructor. However, no generalization is attempted to different kinds of
resumptions. Such a generalization can be achieved by defining a resumption monad transformer and
is attempted in the present thesis.

16.4 Implementation of denotational semantics

Denotational semantics can be considered as an abstract execution model of programming languages.
By rewriting the semantic equations in an appropriate target programming language and by attaching
a front-end for lexical analysis and parsing and a back-end for communication with the environment,
a working implementation of such an abstract interpreter is possible. However, this rewriting of de-
notational semantics is not easy. The choice of target language is a crucial issue and several general-
purpose languages have been suggested. It seems that functional languages are more suitable, since
semantic equations are typically written in meta-languages influenced by the � -calculus.

The list below indicates some general-purpose programming languages that have been used for
the implementation of denotational semantics. However, it does not include the meta-languages of
semantics-oriented specification systems such as SIS or VDMSL.

� Algol 68 was the first imperative programming language to be suggested for this purpose, in
the work of Pagan [Paga79]. An extension to the language was suggested by Pagan, in order to
allow partial parametrization in functions and facilitate the implementation of semantics.

� Pascal has also been used for the same purpose in the work of Allison [Alli83, Alli85]. Al-
though Pascal is a more modest language than Algol 68, this approach circumvents many of
the difficulties indicated by Pagan. However, it is clear from this work that the introduction of
extensions in Pascal could significantly simplify the task.

� Lisp and Scheme were probably the first from the family of functional languages to be used for
the implementation of denotational semantics. Their main advantage is that, being of a func-
tional nature, they are much closer to the meta-languages that are commonly used in semantics.

� ML was suggested as a much more natural choice for the implementation of denotational se-
mantics, in the work of Watt [Watt86]. ML also belongs in the family of functional program-
ming languages. Furthermore, in contrast to Lisp, ML is strongly-typed and this property proves
extremely valuable in detecting errors in semantic equations.

� Haskell and other lazy functional languages have also been used recently for the implementa-
tion of denotational semantics. Lazy languages seem to circumvent non-termination problems,
arising from the direct translation of semantic equations in eager functional programming lan-
guages. Haskell and its sibling Gofer are also strongly typed.

The current trend is towards the use of strongly-typed functional languages, such as ML and
Haskell. Although these languages are not perfectly suited for this purpose, as discussed in Chapter 15,
in most cases they prove to be adequate for the implementation of denotational semantics.

2 The terminology is slightly different, however, as such domains are called “branching domains” in the book of de
Bakker and de Vink and the term “resumption” is used in a different way.”

Chapter 17

Conclusion

This thesis presents the results of the author’s research on the formal semantics of the ANSI C pro- CHAPTER

OVERVIEWgramming language. In this concluding chapter, a recapitulation of the thesis is first attempted in
Section 17.1, where the accomplishments and contribution are briefly summarized. In Section 17.2
directions for future research are presented. Finally, Section 17.3 contains a few closing remarks.

17.1 Summary

A formal semantics for the ANSI C programming language has been developed in this thesis. Empha- ACCOMPLISH-
MENTSsis has been given primarily on the issues of accuracy and completeness, and secondarily on simplicity.

The denotational approach has been followed. In order to improve the modularity and elegance of the
semantics and facilitate its development, monads and monad transformers have been used, represent-
ing different aspects of computations. The semantics is divided in three distinct phases:

� Static semantics;
� Typing semantics; and
� Dynamic semantics.

Among the possible applications of a formal semantics for C, one should first mention its possi-
ble use as a precise, abstract and implementation-independent standard for the language; a point of
reference for implementers and advanced programmers. However, its most important application is
probably as a formal basis for reasoning about the correctness of C programs.

The developed semantics, together with a simple module for syntactic analysis, forms an abstract
interpreter for C programs. A direct implementation of such an abstract interpreter has been developed,
using Haskell as the implementation language. The implementation has been used in order to test the
formal semantics and assess its accuracy and completeness. Although this evaluation process is still
under way, the results so far have shown that the developed semantics is satisfactorily complete and
accurate, with respect to the standard.

The main contribution of this work is the developed semantics itself. The author knows of no other CONTRIBU-
TIONdenotational semantics for ANSI C that is as accurate and complete as the one presented here. With

respect to these two properties, the developed semantics is also superior to all other proposed formal
semantics for C, regardless of the used formalism. This work is a demonstration that a programming
language as useful in practice and as inherently complicated as C can nontheless be given a formal
semantics.

Another significant contribution is the application of monads and monad transformers for the
specification of a real programming language. The use of monads over the category of domains and

222 Chapter 17. Conclusion

continuous functions simply enhances the modularity and elegance of the semantics, without requiring
changes in the mathematical foundations. Throughout this thesis, it has been demonstrated that the
use of monad notation indeed achieves its purpose.

Furthermore, interesting results have been achieved in an attempt to model the interleaving of
computations and non-determinism using monad notation. The resumption monad transformer, which
is defined and investigated in this thesis, in conjunction with the convex powerdomain monad pro-
vides a basis for specifying the semantics of programming languages supporting non-determinism and
execution interleaving or parallelism.

Experimentation with the implementation of the abstract interpreter has also led to interesting re-
sults. The advantages and disadvantages of using lazy and eager functional languages, such as Haskell
and Standard ML, for the implementation of denotational semantics have been explored. Moreover,
it has been demonstrated that the implementation of denotational semantics is also possible in object-
oriented languages with generic types like C++, although such languages are not a natural choice.

17.2 Future research

Several directions for extensions and future investigations are naturally suggested by this research,
ranging in the author’s mind from “definitely feasible” to “almost science fictional”. They are pre-
sented in the following list.

� The primary focus of the author’s research in the near future will be the evaluation and im-
provement of the developed semantics, and it is estimated that significant effort will be made
for the improvement of the existing implementation, in order to facilitate the testing process.
Accuracy and completeness remain the primary objectives. To achieve the first, a number of
corrections in the semantics will be required, most of which will address problems that have
not yet been identified. To achieve the second, an effort will be made to withdraw some of
the deviations presented in Section 2.3. Support for static objects is the first planned addition.
Support for dynamic object allocation is the second. A third planned addition, of significantly
higher complexity, is the extension of the semantics to also cover a large subset of C’s standard
library.

� Further research is required in order to investigate the properties and applications of the resump-
tion monad transformer, which can model arbitrary interleaved computations.

� The implementation of the developed semantics gave rise to an interesting question:

What are the characteristics of a programming language that make it suitable for
implementing denotational specifications, especially using monad notation?

Based on the experience that has been gained from the implementation of the semantics using
the functional and object-oriented programming paradigms, the desired features of an imple-
mentation language for denotational semantics will be investigated. It is hoped that the results
of this research will narrow the gap between the two programming paradigms and will be prof-
itable for the programming community.

� Switching to a less theoretical track, a different research direction aims at the study of the
practical applications that the developed formal semantics for C may have in the software de-
velopment process. Program verification, debugging and understanding will be considered as
possible application areas, as well as proving the correctness of program transformations.

17.3. Closing remarks 223

Figure 17.1: Example of misinterpretation in static semantics.
1:
2:
3:
4:
5:
6:

struct tag { int a; };
void f () {

struct tag dummy;
struct tag * x;
struct tag { int b; } y;

}

Segment (a)

struct tag { int a; };
void f () {

struct tag;
struct tag * x;
struct tag { int b; } y;

}

Segment (b)

� Along the same line, the applications of the developed formal semantics in compiler construc-
tion remain to be explored. Major goals of related research has always been the transformation
of the formal semantics to correct compilers or, at least, the development of correctness proofs
for existing compilers.

� A final direction for future research aims at studying and specifying the semantics of the object-
oriented languages that descend from C, such as C++ and Java. These two languages play
a very important role in the contemporary software industry and the situation is unlikely to
change for many years. The introduction of object-oriented features is bound to produce a large
number of changes, and it is expected that the formal semantics of C++ or Java will be orders
of magnitude more complex than that of C.

17.3 Closing remarks

C is probably the most widely spread programming language in today’s software industry. The author COMMON

MISINTERPRE-
TATIONS

believes that there is a large number of programmers who are confident of their understanding of the
C language, but whose understanding is unfortunately subjective and incorrect, i.e. they do not under-
stand the language in the way that is intended in the standard. He supports his opinion by presenting
three simple programs, which are sources of common misinterpretations among C programmers. In
all cases, however, all doubts vanish when one reads the standard carefully. The examples are taken
respectively from the areas of static, typing and dynamic semantics of C, as these are distinguished in
the present thesis.

Consider the two small program segments shown in Figure 17.1. The two segments differ only in IN STATIC

SEMANTICSthe presence of identifier dummy in line 3. This identifier is never used within function f and therefore,
one might assume that the two segments are equivalent. A question which may seem easy at first is:

What are the members of the structure pointed by x?”

Possible candidates are obviously a and b, depending on which of the declarations for tag is in effect
at line 4. But which one is it? The correct answer is that the two programs are not equivalent and
the only member of the structure is a, in the case of segment (a), and b in the case of segment (b).
The rationale behind this answer can be found in - 6.5.2.3 of the standard and has been discussed in
Section 5.3.

224 Chapter 17. Conclusion

Next, consider the following program segment, which is intended to increase the contents of aIN TYPING

SEMANTICS variable representing the number of counted men or women, depending on the value of a boolean flag.

int countMen = 0, countWomen = 0;
(sexFlag ? countMen : countWomen)++;

The question now is:

Is this program segment legal?

The answer depends on whether a conditional expression is an l-value or not. A footnote in - 6.3.15 of
the standard states that it is not, thus invalidating the above segment. However, popular C compilers
(e.g. GNU C) treat this as an extension to the standard and by default allow such constructs. The
developed typing semantics is very specific about this. Rule E104 in Section 8.1.12 states that the
result of the conditional operator is not an l-value.

As a third example, consider one of the most infamous C expressions:IN DYNAMIC

SEMANTICS

x = x++

together with the question:

Is this expression legal and, if yes, what are the contents of variable x after its execution?

Now many answers are possible. The correct answer is that this expression leads to undefined be-
haviour, since it violates the restriction in - 6.3 of the standard according to which “between the pre-
vious and next sequence point an object shall have its stored value modified at most once by the
evaluation of an expression”. The developed dynamic semantics for C expressions gives the same
answer, although this cannot be very easily verified.

One might argue here that, although the presented program segments are simple, they do not oftenWHEN THE

STANDARD

FAILS
occur in practice. Although this is rather true, it is very probable that any given C programmer will
eventually run into a similar case. Moreover, one might argue that since the informal standard dictates
the answers, the real problem is the programmers’ incompetence. In reply to that, let us consider a
case where the standard itself is not at all clear and many possible interpretations exist. Consider the
following simple C program:

int r = 0;
int f (int x) {

return (r = a);
}
int main () {

return (f(1) + f(2), r);
}

This program presents again a situation that will eventually arise in practice. A natural question is:

Is this program legal and, if yes, what is the number returned by main after its execution?

Similar programs and questions are often discussed in the comp.std.c newsgroup by distinguished
researchers, programmers and even members of the ANSI C standardization committee, invariably
leading to the expression of numerous contradictory opinions and no conclusions reached. Although a
technical discussion will be avoided here, two sound answers corresponding to different possible inter-
pretations of the standard are the following. The approach taken by the developed dynamic semantics
corresponds to the second answer.

17.3. Closing remarks 225

� The program is not legal because r is modified twice between successive sequence points.

� The program is legal and its result may be 1 or 2, but it is unspecified which one.

The result from all this discussion is that programmers’ incompetence, although a significant prob-
lem on its own right, is not solely responsible for misunderstandings. Responsibility lies in the stan-
dard as well. C is an inherently complicated language and simply cannot be defined informally, using
natural language, without introducing ambiguities. Informal texts are valuable as introductions to the
language and for educational purposes. However, the author believes that the definition of the lan-
guage, the standard itself, must be formal. After all, C is very often used to program applications of
a very delicate nature, where software failure may have disastrous results. In this context, misunder-
standings about the programming language cannot be allowed.

After approximately half a century of experience with computers and software, it is widely ac- A VIEW OF

THE FUTUREcepted by now that software development is an engineering discipline, as emphasized by the terms
software engineering and systems engineering that are commonly used to describe it. Typically, all
engineering disciplines are based on theoretical, mathematical foundations. In the case of software
engineering however, there is still a remarkably wide gap between the formal techniques for program
development, devised and advocated by academics in universities, and the techniques and methods
used in practice by software engineers. The author believes that an important goal for Computer Sci-
ence is to narrow this gap and bring together these two communities, for the benefit of both. One way
to achieve this goal is through the formal study of tools and techniques used by software engineers,
and the formal definition of the C programming language happily falls into this research area. The
author believes that future tools used in the software development process will be based on fully for-
mal definitions of programming languages and wishes to see the work that has been presented in this
thesis as one small step in this direction.

Bibliography

[Abel91] H. Abelson et al., “Revised 4 Report on the Algorithmic Language Scheme”, Lisp Point-
ers, vol. 4, no. 3, pp. 1–55, July 1991.

[Alli83] L. Allison, “Programming Denotational Semantics”, Computer Journal, vol. 26, no. 2,
pp. 164–174, 1983.

[Alli85] L. Allison, “Programming Denotational Semantics II”, Computer Journal, vol. 28, no. 5,
pp. 480–486, 1985.

[Alli86] L. Allison, A Practical Introduction to Denotational Semantics, Cambridge University
Press, New York, NY, 1986.

[ANSI89a] American National Standards Institute, New York, NY, American National Standard for
Information Systems: Programming Language C, ANSI X3.159-1989, 1989.

[ANSI89b] American National Standards Institute, New York, NY, Rationale for American National
Standard for Information Systems: Programming Language C, 1989, Supplement to
ANSI X3.159-1989.

[ANSI90] American National Standards Institute, New York, NY, ANSI/ISO 9899-1990, American
National Standard for Programming Languages: C, 1990, Revision and redesignation of
ANSI X3.159-1989.

[ANSI94] American National Standards Institute, New York, NY, Technical Corrigendum Number
1 to ANSI/ISO 9899-1990 American National Standard for Programing Languages: C,
1994.

[Aspe91] A. Asperti and G. Longo, Categories, Types, and Structures: An Introduction to Category
Theory for the Working Computer Scientist, Foundations of Computing Series, MIT Press,
Cambridge, MA, 1991.

[Atta93] I. Attali, D. Caromel and M. Oudshoorn, “A Formal Definition of the Dynamic Semantics
of the Eiffel Language”, Australian Computer Science Communications, vol. 14, no. 1,
pp. 109–119, February 1993.

[Barr96] M. Barr and C. Wells, Category Theory for Computing Science, Prentice-Hall Interna-
tional Series in Computer Science, Prentice Hall, New York, NY, 2nd edition, 1996.

[Bjor82a] D. Bjørner and C. B. Jones, “Algol 60”, in Formal Specification and Software Develop-
ment, chapter 6, pp. 141–173, Prentice Hall, Englewood Cliffs, NJ, 1982.

[Bjor82b] D. Bjørner and C. B. Jones, “Pascal”, in Formal Specification and Software Development,
chapter 7, pp. 175–251, Prentice Hall, Englewood Cliffs, NJ, 1982.

228 Bibliography

[Blac96] P. E. Black and P. J. Windley, “Inference Rules for Programming Languages with Side
Effects in Expressions”, in Proceedings of the 9th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’96), pp. 51–60, Turku, Finland, 26–30 August
1996, Springer Verlag.

[Blak92] B. Blakley, A Smalltalk Evolving Algebra and its Uses, Ph.D. thesis, University of
Michigan, Ann Arbor, MI, 1992.

[Bodw82] J. Bodwin, L. Bradley, K. Kanda, D. Litle and U. Pleban, “Experience with an Exper-
imental Compiler Generator Based on Denotational Semantics”, in Proceedings of the
ACM SIGPLAN’82 Symposium on Compiler Construction, pp. 216–229, June 1982.

[Borg94a] E. Börger, I. Durdanovic and D. Rosenzweig, “Occam: Specification and Compiler Cor-
rectness, Part I: Simple Mathematical Interpreters”, in B. Pehrson and I. Simon, editors,
Proceedings of the IFIP Working Conference on Programming Concepts, Methods and
Calculi (PROCOMET’94), pp. 489–508, North-Holland, 1994.

[Borg94b] E. Börger and D. Rosenzweig, “A Mathematical Definition of Full Prolog”, Science of
Computer Programming, 1994.

[Borg96] E. Börger and I. Durdanovic, “Correctness of Compiling Occam to Transputer Code”,
Computer Journal, vol. 39, no. 1, pp. 52–92, 1996.

[Breu88] T. Breuel, “Lexical Closures for C++”, in Proceedings of the USENIX C++ Conference,
pp. 293–304, Denver, CO, October 1988.

[Brow92] D. F. Brown, H. Moura and D. A. Watt, “ACTRESS: An Action Semantics Directed
Compiler Generator”, in Proceedings of the 4th International Conference on Compiler
Construction, vol. 641 of Lecture Notes in Computer Science, pp. 95–109, New York,
NY, 1992, Springer Verlag.

[Cook94a] J. Cook, E. Cohen and T. Redmond, “A Formal Denotational Semantics for C”, Technical
Report 409D, Trusted Information Systems, September 1994.

[Cook94b] J. Cook and S. Subramanian, “A Formal Semantics for C in Nqthm”, Technical Report
517D, Trusted Information Systems, October 1994.

[Copl92] J. O. Coplien, Advanced C++ Programming Styles and Idioms, Addison-Wesley, 1992.

[Cox91] B. J. Cox and A. J. Novobilski, Object-Oriented Programming: An Evolutionary Ap-
proach, Addison-Wesley, Reading, MA, 2nd edition, 1991.

[Dami94] L. Dami, Software Composition: Towards an Integration of Functional and Object Ori-
ented Approaches, Ph.D. thesis, Université de Genève, April 1994.

[dBak80] J. de Bakker, Mathematical Theory of Program Correctness, International Series in
Computer Science, Prentice Hall, Englewood Cliffs, NJ, 1980.

[dBak96] J. de Bakker and E. de Vink, Control Flow Semantics, Foundations of Computing Series,
MIT Press, Cambridge, MA, 1996.

[dBru72] N. G. de Bruijn, “Lambda-Calculus Notation with Nameless Dummies: A Tool for Auto-
matic Formula Manipulation”, Indagationes Mathematicae, vol. 34, pp. 381–392, 1972.

Bibliography 229

[Dijk76] E. W. Dijkstra, A Discipline of Programming, Prentice Hall, Englewood Cliffs, NJ, 1976.

[Elli90] M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison-Wesley,
Reading, MA, 1990.

[Espi95] D. A. Espinosa, Semantic Lego, Ph.D. thesis, Columbia University, Department of Com-
puter Science, 1995.

[Fior96] M. P. Fiore, A. Jung, E. Moggi, P. O’Hearn, J. Riecke, G. Rosolini and I. Stark, “Domains
and Denotational Semantics: History, Accomplishments and Open Problems”, Techni-
cal Report CSR-96-2, University of Birmingham, School of Computer Science, January
1996.

[Gaud81] M. C. Gaudel, “Compiler Generation from Formal Definition of Programming Lan-
guages: A Survey”, in Formalization of Programming Concepts, vol. 107 of Lecture
Notes in Computer Science, pp. 96–114, Springer Verlag, 1981.

[Geha89] N. H. Gehani and W. D. Roome, Concurrent C, Silicon Press, Summit, NJ, 1989.

[Gogu91] J. A. Goguen, “A Categorical Manifesto”, Mathematical Structures in Computer Science,
vol. 1, pp. 49–68, 1991.

[Gord79] M. J. C. Gordon, The Denotational Descriptions of Programming Languages, Springer
Verlag, Berlin, Germany, 1979.

[Gosl96] J. Gosling, B. Joy and G. L. Steele, Jr., The Java Language Specification, Addison-
Wesley, Reading, MA, 1996.

[Grie81] D. Gries, The Science of Programming, Springer Verlag, New York, NY, 1981.

[Gunt90] C. A. Gunter and D. S. Scott, “Semantic Domains”, in J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, vol. B, chapter 12, pp. 633–674, Elsevier Science
Publishers B.V., 1990.

[Gunt92] C. A. Gunter, Semantics of Programming Languages: Structures and Techniques, Foun-
dations of Computing Series, MIT Press, Cambridge, MA, 1992.

[Gure88] Y. Gurevich and J. Morris, “Algebraic Operational Semantics and Modula-2”, in
E. Börger, H. Kleine Büning and M. M. Richter, editors, Proceedings of the 1st Workshop
on Computer Science Logic (CSL’87), vol. 329 of Lecture Notes in Computer Science,
pp. 81–101, Springer Verlag, 1988.

[Gure90] Y. Gurevich and L. S. Moss, “Algebraic Operational Semantics and Occam”, in E. Börger,
H. Kleine Büning and M. M. Richter, editors, Proceedings of the 3rd Workshop on Com-
puter Science Logic (CSL’89), vol. 440 of Lecture Notes in Computer Science, pp. 176–
192, Springer Verlag, 1990.

[Gure93a] Y. Gurevich, “Evolving Algebras: An Attempt to Discover Semantics”, in G. Rozenberg
and A. Salomaa, editors, Current Trends in Theoretical Computer Science, pp. 266–292,
World Scientific, 1993.

230 Bibliography

[Gure93b] Y. Gurevich and J. K. Huggins, “The Semantics of the C Programming Language”, in
E. Börger et al., editors, Selected Papers from CSL’92 (Computer Science Logic), vol.
702 of Lecture Notes in Computer Science, pp. 274–308, Springer Verlag, New York, NY,
1993.

[Gure95] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide”, in E. Börger, editor, Specification
and Validation Methods, pp. 9–36, Oxford University Press, 1995.

[Harb95] S. P. Harbison and G. L. Steele, Jr., C: A Reference Manual, Prentice Hall, Englewood
Cliffs, NJ, 4th edition, 1995.

[Harp86] R. Harper, D. MacQueen and R. Milner, “Standard ML”, Technical Report ECS-LFCS-
86-12, University of Edinburgh, Laboratory for Foundations of Computer Science, March
1986.

[Harp89] R. Harper, “Introduction to Standard ML”, Technical Report ECS-LFCS-86-14, Uni-
versity of Edinburgh, Laboratory for Foundations of Computer Science, January 1989,
Revised edition.

[Henn90] M. Hennessy, The Semantics of Programming Languages: An Elementary Introduction
Using Structural Operational Semantics, John Wiley and Sons, New York, NY, 1990.

[Hoar69] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming”, Communications of
the ACM, vol. 12, no. 10, pp. 576–583, October 1969.

[Hoar73] C. A. R. Hoare and N. Wirth, “An Axiomatic Definition of the Programming Language
PASCAL”, Acta Informatica, vol. 2, pp. 335–355, 1973.

[Hons95] F. Honsell, A. Pravato and S. Ronchi della Rocca, “Structured Operational Semantics of
the Language SCHEME”, Technical report, University of Torino, Department of Infor-
matics, 1995.

[Huda96] P. Hudak, J. Fasel and J. Peterson, “A Gentle Introduction to Haskell”, Technical Report
YALEU/DCS/RR-901, Yale University, Department of Computer Science, May 1996.

[IEEE91] Institute of Electrical and Electronics Engineers, New York, NY, IEEE Standard for the
Scheme Programming Language, IEEE Standard 1178-1990, 1991.

[John73] S. C. Johnson and B. W. Kernighan, “The Programming Language B”, Technical Re-
port 8, AT&T Bell Laboratories, January 1973.

[Jone80] N. D. Jones and D. A. Schmidt, “Compiler Generation from Denotational Semantics”, in
N. D. Jones, editor, Semantics-Directed Compiler Generation, vol. 94 of Lecture Notes in
Computer Science, pp. 71–93, Springer Verlag, Berlin, Germany, 1980.

[Jone94] M. P. Jones, “The Implementation of the Gofer Functional Programming System”, Re-
search Report YALEU/DCS/RR-1030, Yale University, Department of Computer Sci-
ence, May 1994.

[Kahr93] S. Kahr, “Mistakes and Ambiguities in the Definition of Standard ML”, Technical Report
ECS-LFCS-93-257, University of Edinburgh, Department of Computer Science, 1993.

Bibliography 231

[Kern78] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice Hall,
Englewood Cliffs, NJ, 1978.

[Kern88] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice Hall,
Englewood Cliffs, NJ, 2nd edition, 1988.

[Klag93] H. Klagges, “A Functional Language Interpreter Integrated into the C++ Language Sys-
tem”, Master’s thesis, Balliol College, University of Oxford, Oxford University Comput-
ing Laboratory, September 1993.

[Kuhn95] T. Kühne, “Parameterization Versus Inheritance”, in C. Mingins and B. Meyer, ed-
itors, Proceedings of Technology of Object-Oriented Languages and Systems (TOOLS
Pacific’94), pp. 235–245, London, 1995, Prentice Hall, For correct version ask author;
proceedings contain corrupted version.

[Kutt97a] P. W. Kutter, “Dynamic Semantics of the Oberon Programming Language”, TIK-
Report 25, ETH Zürich, February 1997.

[Kutt97b] P. W. Kutter and A. Pierantonio, “The Formal Specification of Oberon”, Journal of
Universal Computer Science, vol. 3, no. 5, pp. 443–503, 1997.

[Lauf95] K. Läufer, “A Framework for Higher-Order Functions in C++”, in Proceedings of the
USENIX Conference on Object-Oriented Technologies (COOTS), pp. 103–116, Monterey,
CA, 26–29 June 1995.

[Lee87] P. Lee and U. Pleban, “A Realistic Compiler Generator Based on High-Level Semantics”,
in Proceedings of the ACM Symposium on Principles of Programming Languages, pp.
284–295, 1987.

[Lian95a] S. Liang, “A Modular Semantics for Compiler Generation”, Technical Report
YALEU/DCS/TR-1067, Yale University, Department of Computer Science, February
1995.

[Lian95b] S. Liang, P. Hudak and M. Jones, “Monad Transformers and Modular Interpreters”, in
Conference Record of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’95), San Francisco, CA, January 1995.

[Lian96] S. Liang and P. Hudak, “Modular Denotational Semantics for Compiler Construction”,
in Proceedings of the European Symposium on Programming, April 1996.

[Miln76] R. E. Milne and C. Stachey, A Theory of Programming Language Semantics, Chapman
and Hall, London, UK, 1976.

[Miln90] R. Milner, M. Tofte and R. Harper, The Definition of Standard ML, MIT Press, Cam-
bridge, MA, 1990.

[Miln91] R. Milner and M. Tofte, Commentary on Standard ML, MIT Press, Cambridge, MA,
1991.

[Mitc90] J. C. Mitchell, “Type Systems for Programming Languages”, in J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, vol. B, chapter 8, pp. 365–458, Elsevier
Science Publishers B.V., 1990.

232 Bibliography

[Mitc96] J. C. Mitchell, Foundations for Programming Languages, MIT Press, Cambridge, MA,
1996.

[Mogg89] E. Moggi, “Computational Lambda Calculus and Monads”, in IEEE Symposium on Logic
in Computer Science, pp. 14–23, 1989.

[Mogg90] E. Moggi, “An Abstract View of Programming Languages”, Technical Report ECS-
LFCS-90-113, University of Edinburgh, Laboratory for Foundations of Computer Sci-
ence, 1990.

[Morr88] J. Morris, Algebraic Operational Semantics for Modula-2, Ph.D. thesis, University of
Michigan, Ann Arbor, MI, 1988.

[Morr90] J. Morris and G. Pottinger, “Ada-Ariel Semantics”, Technical report, Odyssey Research
Associates, July 1990.

[Moss76] P. D. Mosses, “Compiler Generation Using Denotational Semantics”, in Mathematical
Foundations of Computer Science, vol. 45 of Lecture Notes in Computer Science, pp.
436–441, Springer Verlag, Berlin, Germany, 1976.

[Moss90] P. D. Mosses, “Denotational Semantics”, in J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, vol. B, chapter 11, pp. 577–631, Elsevier Science Publishers
B.V., 1990.

[Moss92] P. D. Mosses, Action Semantics, vol. 26 of Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, New York, NY, 1992.

[Moss93] P. D. Mosses and D. A. Watt, “Pascal Action Semantics”, 1993.

[Norr96] M. Norrish, “Derivation of Verification Rules for C from Operational Definitions”, in
J. von Wright, J. Grundy and J. Harrison, editors, Supplementary Proceedings of TPHOLs
’96, no. 1 in TUCS General Publications, pp. 69–75, Turku Center for Computer Science,
August 1996.

[Norr97] M. Norrish, “An Abstract Dynamic Semantics for C”, Technical Report TR-421, Univer-
sity of Cambridge, Computer Laboratory, May 1997.

[Paga79] F. G. Pagan, “Algol 68 as a Metalaguage for Denotational Semantics”, Computer Journal,
vol. 22, no. 1, pp. 63–66, 1979.

[Pals92] J. Palsberg, “A Provably Correct Compiler Generator”, in B. Krieg-Brückner, editor,
Proceedings of the 4th European Symposium on Programming (ESOP’92), vol. 582 of
Lecture Notes in Computer Science, pp. 418–434, New York, NY, 1992, Springer Verlag.

[Papa96a] N. S. Papaspyrou, “A Framework for Programming Denotational Semantics in C++”,
ACM SIGPLAN Notices, vol. 31, no. 8, pp. 16–25, August 1996.

[Papa96b] N. S. Papaspyrou, “A Framework for Programming Denotational Semantics in C++”,
Technical Report CSD-SW-TR-5-96, National Technical University of Athens, Software
Engineering Laboratory, June 1996.

[Paul82] L. Paulson, “A Semantics-Directed Compiler Generator”, in Proceedings of the ACM
Symposium on Principles of Programming Languages, pp. 224–233, 1982.

Bibliography 233

[Pede80] J. S. Pedersen, “A Formal Semantics Definition of Sequential Ada”, in D. Bjørner and
O. N. Oest, editors, Towards a Formal Description of Ada, vol. 98 of Lecture Notes in
Computer Science, pp. 213–308, Springer Verlag, New York, NY, 1980.

[Pete97] J. Peterson and K. Hammond (editors), Report on the Programming Language Haskell,
version 1.4 edition, March 1997, Available from http://haskell.org/.

[Pett92] M. Pettersson and P. Fritzson, “DML: A Meta-Language and System for the Generation
of Practical and Efficient Compilers from Denotational Specifications”, in Proceedings
of the 1992 International Conference on Computer Languages, pp. 127–136, 1992.

[Pier90] B. C. Pierce, “A Taste of Category Theory for Computer Scientists”, Technical Report
CMU-CS-90-113R, Carnegie Mellon University, School of Computer Science, Septem-
ber 1990.

[Pier91] B. Pierce, Basic Category Theory for Computer Scientists, Foundations of Computing
Series, MIT Press, Cambridge, MA, 1991.

[Pleb88] U. F. Pleban and P. Lee, “An Automatically Generated, Realistic Compiler for an Im-
perative Programming Language”, in Proceedings of the ACM SIGPLAN’88 Conference
on Programming Language Design and Implementation, pp. 222–227, Atlanta, GA, June
1988.

[Plot76] G. D. Plotkin, “A Powerdomain Construction”, SIAM Journal on Computing, vol. 5, pp.
452–487, 1976.

[Rams95] J. D. Ramsdell, “CST: C State Transformers”, ACM SIGPLAN Notices, vol. 30, no. 12,
pp. 32–36, December 1995.

[Rich79] M. Richards and C. Whitbey-Stevens, BCPL: The Language and its Compiler, Cambridge
University Press, Cambridge, UK, 1979.

[Ritc93] D. M. Ritchie, “The Development of the C Language”, ACM SIGPLAN Notices, vol. 28,
no. 3, pp. 201–208, March 1993, Preprints of the Second ACM SIGPLAN History of
Programming Language (HOPL II).

[Rose92] J. R. Rose and H. Muller, “Integrating the Scheme and C Languages”, in Conference
Record of the ACM Symposium on Lisp and Functional Programming, pp. 247–259, San
Francisco, CA, 1992.

[Sarg93] J. Sargeant, “United Functions and Objects: An Overview”, Technical Report UMCS-
93-1-4, University of Manchester, Department of Computer Science, 1993.

[Schm86] D. A. Schmidt, Denotational Semantics: A Methodology for Language Development,
Allyn and Bacon, Newton, MA, 1986.

[Scot71] D. Scott and C. Strachey, “Towards a Mathematical Semantics for Computer Languages”,
in Proceedings of the Symposium on Computers and Automata, pp. 19–46, Brooklyn, NY,
1971, Polytechnic Press.

[Scot82] D. S. Scott, “Domains for Denotational Semantics”, in International Colloquium on
Automata, Languages and Programs, vol. 140 of Lecture Notes in Computer Science, pp.
577–613, Berlin, Germany, 1982, Springer Verlag.

234 Bibliography

[Seth80] R. Sethi, “A Case Study in Specifying the Semantics of a Programming Language”,
in Proceedings of the 7th Annual ACM Symposium on Principles of Programming Lan-
guages, pp. 117–130, January 1980.

[Seth83] R. Sethi, “Control Flow Aspects of Semantics-Directed Compiling”, ACM Transactions
on Programming Languages and Systems, vol. 5, no. 4, pp. 554–595, October 1983.

[Sita90] D. Sitaram and M. Felleisen, “Reasoning with Continuations II: Full Abstraction for
Models of Control”, in M. Wand, editor, Conference Record of the ACM Symposium on
Lisp and Functional Programming, pp. 161–175, ACM Press, 1990.

[Stee94] G. L. Steele, Jr., “Building Interpreters by Composing Monads”, in Proceedings of the
ACM Symposium on Principles of Programming Languages, 1994.

[Stoy77] J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory, MIT Press, Cambridge, MA, 1977.

[Stro91] B. Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, MA, 2nd
edition, 1991.

[Subr96] S. Subramanian and J. V. Cook, “Mechanical Verification of C Programs”, in Proceedings
of the ACM SIGSOFT Workshop on Formal Methods in Software Practice, January 1996,
Extended abstract.

[Tenn76] R. D. Tennent, “The Denotational Semantics of Programming Languages”, Communica-
tions of the ACM, vol. 19, no. 8, pp. 437–453, August 1976.

[Tenn91] R. D. Tennent, Semantics of Programming Languages, Prentice Hall, Englewood Cliffs,
NJ, 1991.

[Vale93] M. Vale, “The Evolving Algebra Semantics of COBOL, Part 1: Programs and Control”,
Technical Report CSE-TR-162-93, University of Michigan, EECS Department, Ann Ar-
bor, MI, 1993.

[Wadl92] P. Wadler, “The Essence of Functional Programming”, in Proceedings of the 19th Annual
Symposium on Principles of Programming Languages (POPL’92), January 1992.

[Wadl94] P. Wadler, “Monads and Composable Continuations”, Lisp and Symbolic Computation,
vol. 7, no. 1, pp. 39–56, January 1994.

[Wadl95a] P. Wadler, “How to Declare an Imperative”, in J. Lloyd, editor, Proceedings of the
International Logic Programming Symposium (ILPS’95), MIT Press, December 1995.

[Wadl95b] P. Wadler, “Monads for Functional Programming”, in J. Jeuring and E. Meijer, editors,
Proceedings of the Båstad Spring School on Advanced Functional Programming, vol. 925
of Lecture Notes in Computer Science, Springer Verlag, New York, NY, May 1995.

[Wall93] C. Wallace, “The Semantics of the C++ Programming Language”, Technical Report CSE-
TR-190-93, University of Michigan, Department of Electrical Engineering and Computer
Science, December 1993.

[Wall95] C. Wallace, “The Semantics of the C++ Programming Language”, in E. Börger, editor,
Specification and Validation Methods, pp. 131–164, Oxford University Press, 1995.

Bibliography 235

[Watt86] D. A. Watt, “Executable Semantic Descriptions”, Software Practice and Experience,
vol. 16, no. 1, pp. 13–43, January 1986.

[Watt87] D. A. Watt, “An Action Semantics of Standard ML”, in Proceedings of the 3rd Work-
shop on the Mathematical Foundations of Programming Language Semantics, vol. 298 of
Lecture Notes in Computer Science, pp. 572–598, New York, NY, 1987, Springer Verlag.

[Watt94] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morrison, J. M. Steinbach and
R. S. Sutor, “A First Report on the A# Compiler”, in Proceedings of the International
Symposium on Symbolic and Algebraic Computation, July 1994.

[Wins93] G. Winskel, The Formal Semantics of Programming Languages, Foundations of Com-
puting Series, MIT Press, Cambridge, MA, 1993.

[Wolc87] M. Wolczko, “Semantics of Smalltalk-80”, in European Conference on Object-Oriented
Programming (ECOOP’87), vol. 276 of Lecture Notes in Computer Science, pp. 108–120,
New York, NY, 1987, Springer Verlag.

Index of notation

Category theory
�

category 27

dom ��� � domain object of arrow � 27

codom ��� � codomain object of arrow � 27

����� ��� arrow with domain � and codomain � 27

� ��	 composition of arrows � and 	 27

id � identity arrow on object � 27

� � � � � functor from category
�

to category � 28

� ��� composition of functors � and � 28

id � identity functor on category
�

28

� � composition of functor � with itself � times 28
� � � �� � natural transformation between functors � and � 29
� � arrow on object � induced by natural transformation � 29
� � � composition of natural transformations � and � 29

� ��� composition of natural transformation � and functor � 29

� �
 functors � and
 are adjoint 30

� � � product of � and � 30

� � � � � 	 � product mediating arrow between � � and � 	 30

� � � sum of � and � 30

 ��� � �
	 � sum mediating arrow between � � and �
	 30

� � � � 	 � � � � � � � finite product of � � � � 	 � � � � � � 31

� � � � 	 � � � � � � � finite sum of � � � � 	 � � � � � � 31

Domain theory

 � ordering relation on poset 	 33

� � least upper bound of subset � of a poset 33

� � set of elements below � in poset 	 33
� ��	 � the set of compact elements of cpo 	 34

� � 	 subset � is normal in poset 	 34

� � ��� � bottom and top elements of domain 	 34

238 Index of notation

��� flat domain induced by set � 34

� domain with one element � 34

� domain with two elements � and � 34

� domain with three elements � , u and � 34

� truth value domain � true � false
�
� 34

� flat domain of integer numbers 34
� poset of integer numbers under relation 34

� � � � ��! # chain of elements � � in poset 	 34

fix least fixed point operator 35

clo closure operator 35

	 � � product of domains 	 and � 35

� � � � � pair of elements in a product domain 35

� ��� � �
	 � product function 35

	�� � smash product of domains 	 and � 36

	 � � separated sum of domains 	 and � 36

 ��� � �
	 � sum selection function 36

	�� � coalesced sum of domains 	 and � 36

	�� lifted domain 37

� � 	 � � � � � dependent function domain 37

� � 	 	 � � � � dependent product domain 37

� ��� category of domains and continuous functions 37

� ��� �� category of domains and ep-pairs 37
��� �

category of continuous semi-lattice domains and
continuous homomorphisms

37

 forgetful functor between categories
� � �

and � ��� 37� ��� � �
diagram indexed by poset � over category

�
38

� � � ��� cone over diagram
�

38

��� � �
 mediating arrow between cones � and
 38� �
diagram defined by shifting

�
38

�
�

cone defined by shifting � 38

���� � � � set of finite non-empty subsets of � 39

�

(convex) powerdomain ordering relation on � �� ��	 � 39

	
�

(convex) powerdomain of 	 39

�
�

powerdomain function 39

��� � �� powerdomain singleton for element � 39

� � � � powerdomain union of � and
�

39

� (convex) powerdomain functor 40

239

� � application of associative, communtative and idempotent
binary relation � to all elements of finite non-empty set �

40

	
(convex) powerdomain monad 40

ext
�

powerdomain function extension operator 41

Monads

��� � � � � � monad with endofunctor � , unit � and join � 31

��� � unit � �
� alternative monad notation, where � is the bind operator 33

� � 	 monadic inverse composition of functions 44

mfix monadic least fixed point operator 44

mclo monadic closure operator 44

Meta-language

� � � ��	 well formed phrase � denotes element � of domain 	 41

� � � � � � 	 conditional construct 41

� � � � function abstraction 42

� � � 	 function application 42

���
	 � � � ��� � � � let structure 43	�
� � � � � �� � � � case structure 43

� � � ���� � function update 44

Static semantics

�
	 � domain of identifiers 47

�

	 ���� � domain of tag types 48

�

	 domain of tags 48

���� � � �"! domain of data types 48

*,+
 � domain of qualifiers 48

���� � �	�
 domain of object types 49

���� � ����� domain of function types 49

���� � ��� � domain of denotable types 49

���� � ! � ! domain of member types 49

���� � ��% ! domain of bit-field types 49

���� �) ��* domain of value types 49

���� � % ��� domain of identifier types 49

���� � 365 7 domain of phrase types 49

� error monad 50

�
� 	 domain of type environments 51, 88

240 Index of notation

� � empty type environment 52, 88

� � ide � lookup ordinary identifier � in � 52

� � raw ide � raw lookup ordinary identifier � in � 52, 88

� � tag � � lookup tag � of type � in � 52

� � raw tag � � raw lookup tag � of type � in � 52, 88

� � tagID � � get tag � of type � in � 53

� � �� ide
� � update ordinary identifier � with

�
in � 53, 88

� � �� tag � update tag � with in � 53, 88

� � �� fresh tag � � create a fresh tag � of type � in � 53, 89
� � open a new empty scope enclosed in � 53, 89

� � close scope � 54, 89

isLocal � � � � ide � check if ordinary identifier � is local in � 54, 89

isLocal � � � � ide � check if tag � is local in � 54, 89

�
� +�� domain of enumeration environments 54

� � empty enumeration environment 54

� � �� � � update identifier � with value � in � 54

� �	��
 domain of member environments 55

� � empty member environment 55

� � � lookup identifier � in � 55

� � �� % � append identifier � of type % to � 55
� � decompose � by extracting the first member 55

��� � 	 domain of function prototypes 56

� � empty function prototype 56

��� append parameter of type to � 56

�� � prepend parameter of type to � 56

 ��� 	 data type � is included in 	 62
� � constant � can be represented by data type 62

� ��� � 	 combine type qualifiers �
� and � 	 67

� ��� � 	 check if qualifier � � is included in � 	 67

Typing semantics

��� phrase � � phrase is attributed type � in type environment � (main
typing relation)

95

� �

 the static semantic valuation
 � � ��	 � produces the
(non-error) value � ��	

96

��� � � �
identifier � is associated with type

�
in type environment � 96

� � ��� % identifier � is associated with type % in member
environment �

97

241

��� � � expression � can be assigned to an object of type . 97

��� �
 NULL expression � is a null pointer constant 97

��� � � � type name
�

denotes type � in type environment � 97

��� � phrase � � it is not possible to derive ��� phrase � � 97

Dynamic semantics

�
�� domain of object identifiers 127

� + � domain of function identifiers 128

� 	 	 � domain of addresses 128

��� � �
	 domain of object offsets (in bytes) 128

� � 	 � � � domain of bit-field offsets (in bits) 128

 	 � � � � ! dynamic domain corresponding to data type 129

 � � � �	�
 dynamic domain corresponding to object type � 129

 � � � ����� dynamic domain corresponding to function type � 129

 � � � ��� � dynamic domain corresponding to denotable type � 129

 % � � ! � ! dynamic domain corresponding to member type % 129

 � � �) �+* dynamic domain corresponding to value type � 129

�� domain of characters 129

��� domain of signed characters 129

� �� domain of unsigned characters 129

��� � domain of short integers 129

� �� domain of unsigned short integers 129

��� � domain of integers 129

� � � domain of unsigned integers 129

��� � domain of long integers 129

� ��� domain of unsigned long integers 129

��� domain of low precision real numbers 129

� � domain of normal precision real numbers 129

��� � domain of high precision real numbers 129

� ��� domain of enumerated values of type � 129

� value monad 130	
powerdomain monad 130

� domain of program states 131

 domain of continuations 132

� domain of program answers 132
�

continuation monad 133

242 Index of notation

� � �
�
� 	 non-deterministic option between elements of domain� ��	 �

134

� resumption monad transformer 134, 136

� � � ��� � � ��� 	 interleaving of computations produced by monad � � � � 145

� monad of expression computations 145

 � � � � � ! domain of dynamic type environments based on � 147

 � � � � � dynamic domain corresponding to the type of � in � 147

� � � open a new dynamic type environment based on �
enclosed in �

147

� � � close the dynamic environment � based on � 147

 � � � � � � �"! dynamic domain corresponding to the data type of � in � 149

 � � � � � ! � ! dynamic domain corresponding to the member type of �
in �

149

 � � � � 7 � ! domain of dynamic function prototypes based on � 149

 � � � � � dynamic domain corresponding to the type of the � -th
argument in �

149

� � 	 domain of arguments of unspecified type 150

 � 	 domain of code environments 150

� � �	� lookup function
�
� in � 150

� � � ���� � update function
�
� with � in � 150

� 	 � � �
	 domain of scope identifiers 150

� 	 � � domain of scope information 150

� domains of scope-bound continuations 152
� � monad of statement computations 153
� � monad of statement auxiliary information 153

�

 domain of label environments 156

� � empty label environment 156

 � � domain of case label environments 157
� � empty case label environment 157

Index of terms

abstract state machine, 6, 216, 217
abstract syntax, 20–23
action semantics, see semantics
Actress, 10
Ada, 14, 216

sequential, 215
adjunction, 29

counit, 30
induced monad, 31
unit, 30

algebraic, 34
Algol, 4, 14, 189, 215, 219
Allison, L., 219
arrow, 27

codomain, 27
composition, 27
domain, 27
mediating, 38

atomic step, 134
Attali, I., 216
axiomatic semantics, see semantics

B, 3
Backus Naur Form (BNF), 5
Baumann, P., 215
BCPL, 3
behaviour

implementation-defined, 17
undefined, 18
unspecified, 18

bit-field, 24
Bjørner, D., 215
Black, P. E., 15, 217
Blackley, B., 216
Börger, E., 216

C
characteristics, 4
complexities, 17
deviations, 23–25

general, 3–4
ISO standard, 4
library, 23, 25, 222
origins, 3
problems, 9, 224

C++, 4, 14, 198, 216, 223
C9X, 4
Cantor, 10
Caromel, D., 216
category, 27
category theory, 7, 27–31
CERES, 10
Cholera, 217
Clinger, W., 215
Cobol, 14, 216
Cohen, E., 217
colimit, 38
comp.std.c newsgroup, 9, 224
compositionality, 6
Concurrent C, 4
cone, 38

colimiting, 38
continuation, 132
control operator, 190
Cook, J., 15, 217
cpo, 33

bifinite, 34
bounded complete, 34
compact element of, 34

De Bakker, J., 218
De Bruijn index, 201
De Bruijn, N. G., 201
De Vink, E., 218
declaration

abstract syntax, 20–22
dynamic semantics, 171–178
external, 20
general, 18–19
static semantics, 71–82

244 Index of terms

typing semantics, 117–120
declarator, 21
default argument promotion, 63
denotation, 6
denotational semantics, see semantics
diagram

commuting, 28
indexed by poset, 38

DML, 10
domain, 6

category, 37
continuous semi-lattice, 37

category, 37
homomorphism, 37

definition, 34
flat, 34
lifted, 37
powerdomain, see powerdomain

domain theory, 33–41
Durdanović, I., 216
dynamic semantics, 13,

see also Index of Notation
code environment, 150
domain ordering, 127
function prototype, 149
label environment, 156
member environment, 149
scope, 150
type environment, 146

Eiffel, 14, 216
endofunctor, 28
envelope / letter, 199
ep-pair, 34

category, 37
composition, 34

Espinosa, D., 218
evaluation order, 19
evolving algebra, see abstract state machine
execution, 11
expression

abstract syntax, 22
dynamic semantics, 159–169
general, 19
typing semantics, 101–115

� -algebra, 29

category, 29
initial, 29

� -homomorphism, 29
Fortran, 4
function

bistrict, 36
closure operator, 35
continuous, 35
dependent, 37
domain, 35
fixed point, 35
least fixed point operator, 35
monotone, 35
strict, 35

function-designator, 19
functor, 28

composition, 28
continuous, 38
forgetful, 37
identity, 28

GNU extensions, 210
Gofer, 194, 219
Gurevich, Y., 6, 15, 216, 217

Harper, R., 215
Haskell, 194, 214, 219
Hoare, C. A. R., 216
HOL theorem prover, 217
Honsell, F., 216
Hudak, P., 15, 218
Huggins, J. K., 15, 217

ideal, 33
induced domain, 34

implementation
functional programming, 192

direct approach, 192
structured approach, 192, 194

object-oriented programming, 198
C++ extensions, 210
preprocessor, 206
type-safe version, 204
untyped framework, 199

of denotational semantics, 189
of the proposed semantics, 214

initialization, 19, 20, 24
abstract syntax, 21

Index of terms 245

dynamic semantics, 177
static semantics, 75
typing semantics, 119

integral promotion, 62
interleaved computation, 134
isomorphism, 27

Java, 4, 223
Jones, C. B., 215
Jones, M. P., 15, 218

K&R, 3
Kutter, P. W., 216

l-value, 19
in typing semantics, 101
modifiable, 61

Liang, S., 15, 218
Lisp, 219

MATHS project, 15, 217
MESS, 10
meta-language

auxiliary functions, 43
core, 41
syntactic sugar, 42

Milner, R., 215
ML, see Standard ML
Modula-2, 14, 216
Moggi, E., 7, 15, 218
monad, 6, 7, 15, 31–33, 218

bind, 32, 33
category, 32
continuation, 132
error, 50
for expressions, 145
for statements, 153
in category theory, 31
in functional programming, 32
join, 31
laws, 31
powerdomain, 130
unit, 31
value, 130

monad morphism, 32
monad transformer, 32

resumption, 134, 222
Morris, J., 216

Moss, L. S., 216
Mosses, P. D., 6, 216

natural transformation, 29
composition, 29

Norrish, M., 15, 217
Nqthm, 217

Oberon, 14, 216
object, 27

initial, 27
terminal, 27

Objective C, 4
Occam, 14, 216
omega-chain

categorical analogue, 38
operational semantics, see semantics
Oudshoorn, M., 216

Pagan, F. G., 219
partial order, see poset
Pascal, 14, 189, 215, 216, 219
Pedersen, J. S., 215
PFLC, 189
phrase, 93
Pierantonio, A., 216
Plotkin, G. D., 218
poset, 33

complete, see also cpo, 33
induced category, 37
� -chain, 34
subset of

bounded, 33
directed, 33
downward closed, 33
least upper bound, 33
normal, 34
upper bound, 33

Pottinger, G., 216
powerdomain, 39

as adjunction, 40
big union, 40
continuous semi-lattice domain, 40
functor, 40
monad, 40
singleton, 39
union, 39

Pravato, A., 216

246 Index of terms

product
dependent, 37
domain, 35
finite, 31
in category theory, 30
projection functions, 35
smash, 36

program state, 131
Prolog, 14, 216
PSP, 10

r-value, 49
in typing semantics, 101

random access machine, 15, 217
Redmond, T., 217
Rees, J., 215
resumption, 134
Richards, M., 3
Ritchie, D., 3, 4, 17
Ronchi della Rocca, S., 216
Rosenzweig, D., 216

Scheme, 14, 215, 216, 219
Scott, D. S., 6, 33
semantic analysis, 10
Semantic Lego, 218
semantics, 5

action, 6, 216
axiomatic, 6, 216, 217
C, 15, 216
denotational, 5, 6, 215–217
formal, 5
informal, 5
operational, 5, 215, 217
real programming language, 14
real programming languages, 6, 7, 215

sequence point, 19
Sethi, R., 15, 216, 217
side-effect, 19
SIS, 10, 219
Sitaram, D., 190
Smalltalk, 14, 215, 216
Standard ML, 14, 189, 192, 214–216, 219
statement

abstract syntax, 23
compound, 19
dynamic semantics, 179–185

expression, 19
general, 19–20
iteration, 20
jump, 20
selection, 20
typing semantics, 121

static semantics, 12,
see also Index of Notation

domain ordering, 47
enumeration environment, 54
equation, 71
fixing process, 89
function, 71
function prototype, 56
member environment, 54
type environment, 51, 87

Steele, Jr., G. L., 218
Strachey, C., 6, 33
Subramanian, S., 15, 217
sum

coalesced, 36
finite, 31
in category theory, 30
injection functions, 36
separated, 36

syntactic analysis, 10
syntax, 5

abstract, 12
concrete, 11
lexical analysis, 11

tag, 19
Thompson, K., 3
Tofte, M., 215
translation unit, 20, 23
type

assignment, 93
compatible, 64
composite, 65
incomplete, 19
phrase, 93
qualifier, 18, 21, 67
recursively defined, 83–90

typedef , 11, 19, 20, 24
typing semantics, 12,

see also Index of Notation
derivation, 94

Index of terms 247

judgement, 93, 95–97
problem, 94
rule, 93
uniqueness issues, 98, 101

usual arithmetic conversion, 63

Vale, M., 216
VDM, 215, 219

Wadler, P., 15, 218
Wallace, C., 216
Watt, D. A., 6, 216, 219
Windley, P. J., 15, 217
Wirth, N., 216
Wolczko, M., 215

Index of functions

Static semantic functions
��� abstract-declarator �� , 82
��� declaration �� , 73
��� declaration-list �� , 73
��� declaration-specifiers �� , 73
��� declarator �� , 80
� ��� declarator �� , 80
� ��� declarator �� , 80
��� enum-specifier �� , 79
��� enumerator �� , 79
��� enumerator-list �� , 79
��� external-declaration �� , 73
��� external-declaration-list �� , 72
��� init-declarator �� , 75
��� init-declarator-list �� , 75
��� initializer �� , 76
��� initializer-list �� , 76
��� parameter-declaration �� , 81
� ��� parameter-declaration �� , 81
��� parameter-type-list �� , 81
� ��� parameter-type-list �� , 81
��� storage-class-specifier �� , 74
��� struct-declaration �� , 78
��� struct-declaration-list �� , 77
��� struct-declarator �� , 78
��� struct-declarator-list �� , 78
��� struct-specifier �� , 76
��� struct-specifiers �� , 78
��� translation-unit �� , 72
��� type-name �� , 82
��� type-qualifier �� , 74
��� type-specifier �� , 75
��� typedef-name �� , 82
��� union-specifier �� , 77

Typing rules
additive operators, 107

(E52–E59)
address operator, 104

(E28, E29)

array subscripts, 103
(E16)

assignment rules, 114
(A1–A6)

binary assignment operators, 112
(E113, E114)

bitwise logical operators, 110
(E90–E95)

bitwise negation operator, 105
(E36, E37)

bitwise shift operators, 107
(E60–E63)

cast operators, 106
(E43–E45)

character constants, 102
(E9, E10)

comma operator, 113
(E115)

compound statement, 122
(S5)

conditional operator, 111
(E102–E112)

declarations, 118
(D1–D3)

declarators, 118
(D4–D14)

empty statement, 121
(S3)

equality operators, 109
(E76–E89)

expression statement, 121
(S4)

external declarations, 117
(X2–X4)

floating constants, 102
(E1–E3)

function calls, 103
(E17, R1–R4)

function parameters, 119
(D15–D18)

250 Index of functions

identifiers, 103
(E13–E15)

implicit coercions, 113
(C1–C5)

indirection operator, 104
(E30, E31)

initializations, 119
(I1–I12)

integer constants, 102
(E4–E8)

iteration statements, 123
(S12–S14)

jump statements, 123
(S15–S19)

labeled statements, 122
(S9–S11)

logical negation operator, 105
(E38)

logical operators, 110
(E96–E101)

member operators, 103
(E18–E23)

multiplicative operators, 106
(E46–E51)

null pointer constants, 115
(N1, N2)

optional expressions, 124
(S20)

relational operators, 108
(E64–E75)

selection statements, 122
(S6–S8)

sizeof operator, 105
(E39–E42)

statement lists, 121
(S1, S2)

string literals, 102
(E11, E12)

translation units, 117
(X1)

type names, 114
(T3)

typing from declarations, 114
(T1, T2)

unary assignment operators, 104
(E24–E27)

unary sign operators, 105

(E32–E35)

Dynamic semantic functions
 arg � � � � , 160
 decl � � , 173

� decl � � , 173
� decl � � , 173
�� decl � � , 173
 dtor � � � � , 174

� dtor � � � � , 175
� � dtor func �	� ��� � � , 175
� � dtor func �	� ��� � � , 176

� dtor � � � � , 175
�� dtor � � � � , 175
 exp � � � � , 160

� exp � � � � exp � � � , 160
 idtor � � , 174

� idtor � � , 174
� idtor � � , 174
�� idtor � � , 174
 init % � � � , 177
 init-a � � � � , 178
 init-s � � � � , 178
 init-u � � � � , 178
 lvalue % � � � , 160
 par � � � , 176
�� par � � � , 177
 prot � � � � , 176
�� prot � � � � , 176
 stmt � � � , 179
� stmt � � � , 179

� stmt � � � , 179
� stmt � � � , 179
 tunit � � , 171
 val � � � , 160
 xdecl � � , 171
� xdecl � � , 172
� xdecl � � , 172
 = � � ! � � , 168
 binary-assignment � � ! � ��� � ��� � � !� � � !� � � , 169
 binary-operator � � ��� � ��� � � , 164
� binary-operator � � ��� � ��� � � !� � � !� � � , 165
� binary-operator � � � � � � � � � !� � � !� � � , 165
� constant � � � , 160
��� constant-expression � � , 160
 unary-assignment � � � , 163
 unary-operator � � � , 163

Index of functions 251

Dynamic semantic equations
A1, A2, A3, A4 and A5, 169
A6, 169
C1, 169
C2, 169
C3, 169
C4, 169
C5, 169
D1, 173
D2, 173
D3, 173
D4, 174
D5, 174
D6, 174
D7, 174
D8, 174–176
D9, 174–176
D10, 174–176
D11, 174–176
D12, 174–176
D13, 174–176
D14, 174–176
D15, 176
D16, 176
D17, 176
D18, 176, 177
E1, E2 and E3, 161
E4, E5, E6, E7 and E8, 161
E9 and E10, 161
E11, 161
E12, 161
E13, 161
E14, 161
E15, 161
E16, 161
E17, 162
E18, 162
E19, 162
E20, 162
E21, 162
E22, 162
E23, 162
E24, E25, E26 and E27, 163
E28, 163
E29, 163
E30, 163
E31, 163

E32, E34 and E36, 164
E33, E35 and E37, 164
E38, 164
E39, 164
E41, 164
E42, 164
E43, 164
E44, 164
E45, 164
E46, E48, E50, E52, E56, E90, E92 and

E94, 165
E47, E49, E51, E53, E57, E91, E93 and

E95, 166
E54, E55, E58, E59, E66, E69, E72, E75,

E78, E79, E80, E85, E86, E87, E98,
E101 and E115, 166

E60 and E62, 166
E61 and E63, 166
E64, E67, E70, E73, E76 and E83, 166
E65, E68, E71, E74, E77 and E84, 166
E81, 167
E82, 167
E88, 167
E89, 167
E96 and E99, 166
E97, 166
E100, 166
E102, 167
E103, 167
E104, E105, E106, E107, E108, E111 and

E112, 167
E109, 167
E110, 167
E113, 168
E114, 168
I1, 177
I2, 177
I3, 177
I4, 177
I5, 177
I6, 177
I7, 177
I8, 178
I9, 178
I10, 178
I11, 178
I12, 178

252 Index of functions

R1, 162
R2, 162
R3, 162
R4, 162
S1, 180
S2, 180
S3, 180
S4, 180
S5, 181
S6, 182
S7, 182
S8, 182
S9, 183
S10, 183
S11, 183
S12, 184
S13, 184
S14, 184
S15, 185
S16, 185
S17, 185
S18, 185
S19, 185
S20, 185
X1, 171
X2, 171, 172
X3, 171, 172
X4, 171, 172

Auxiliary functions
addrOffset
 , 128
allocate , 148
argPromote , 63
arithConv, 63
bi-strict � , 44
bi-strict � , 44
bi-strict � , 44
bits-in-byte , 68
cast ���� � ! , 129
checkBoolean � , 129
composite , 65
compositeQual , 66
cond � � � � � � � � � ! , 167
convertSC , 152
create , 147
datify , 63
defineBlock , 151

destroy , 148
down , 37
ellipsis, 56
endBlock , 151
error , 51
escape , 133
firstToRepresent , 62
fix-parameter , 68
foldln , 158
follow , 155
fresh-tagged , 68
fresh-untagged , 68
fromAddr
 , 129
fst , 35
fullExpression, 146
funbody, 155
getBreak , 155
getCase � � � ! , 157
getContinue , 155
getLabel , 156
getQualifier , 67
getState � , 134
getState � , 146
getValue &��� � , 146
id , 44
init-fix, 89
init-fix-L , 156
inl , 36
inr , 36
inScope , 151
intPromote , 62
isArithmetic , 58
isBitfield , 61
isCompatible , 64
isCompatibleQual , 65
isComplete , 60
isDecimal , 69
isDeclaredTag , 59
isInteger , 57
isIntegral , 57
isl , 44
isModifiable , 61
isr , 44
isScalar , 58
isStringLit , 69
isStructUnion , 59
isValidBitfieldSize, 68

Index of functions 253

isWideStringLit , 69
lengthOf , 69
lift � � � , 145
lift � ��� , 154
lift � � � , 133
lift � ��� , 145
lift � � � , 154
lift � � � , 154
lift � �
 , 130
lift � � � , 145
lift � ��� , 154
lift
 � � , 133
lift
 � � , 130
lift
 � � , 145
lift
 ��� , 154
lift
 ��� , 154
lookup , 148
loop � � � ! , 183
makeSC , 152
mclo , 44
mfix , 44
newFunction, 128
newObject
 , 127
outl , 44
outr , 44
prefix , 69
putValue ���� & , 146
qualify , 67
rec , 90
rec-L , 156
result � , 155
run, 144
scopeEmpty � , 151
scopeGetId , 151
scopeGoto , 152
scopeUse , 151
seqpt , 146
setBreak , 155
setCase � � � ! , 157
setContinue , 155
setDefault � � � ! , 157
setLabel , 156
setState � , 134
setState � , 146
shift , 158
sizeof , 68
snd , 35

stateAllocate & , 131
stateCommit , 132
stateDestroy & , 131
stateRead &��� � , 132
stateWrite ���� & , 132
step , 144
storeStringLit
 , 158
storeWideStringLit
 , 158
strict � , 44
strict � , 44
strict � , 44
structMember � , 149
suffix , 69
toAddr
 , 129
traverse , 69
unionMember � , 149
up , 37
use , 155
useContinuation, 153
zeroArray
 , 158
zeroMember & , 158
zeroStruct � , 158
zeroValue � , 129

