Foundations of Logic Programming

Vladimir Lifschitz
Department of Computer Sciences
University of Texas
Austin, TX 78712

Abstract

This is a survey of the theory of logic programs with classical negation and
negation as failure. The semantics of this class of programs is based on the notion
of an answer set. The operation of Prolog is described in terms of proof search in
the SLDNF calculus.

1 Introduction

In this survey, we view logic programming as a method for representing declarative
knowledge. To put the subject in a proper perspective, we briefly discuss here two other
approaches to knowledge representation and compare them with logic programming.

1.1 Relational Databases and First-Order Theories

We would like to represent facts about the parenthood relations among several members
of Britain’s royal family: the Queen, the Prince and Princess of Wales, and their
children. These facts can be represented as a relational database, as follows:

Relation Mother

PARENT | CHILD
Elizabeth | Charles
Diana William
Diana Harry

Relation Father

PARENT | CHILD
Charles William
Charles Harry

We will call this database DBj.
Alternatively, these facts can be encoded as a first-order theory. The names of
the five individuals involved are the object constants of this theory T7; Mother and

Father are its binary predicate constants. The first group of axioms of T} tells us that
the domain of reasoning consists of the five distinct objects represented by the object
constants:

Va(x = Elizabeth \/ x = Charles V © = Diana V © = William V © = Harry), (1)
Elizabeth # Charles, Elizabeth # Diana, ..., William # Harry. (2)

Axiom (1) is said to express the “domain closure assumption,” and axioms (2)
express the “unique name assumption.” The second group of axioms characterizes
the predicates Mother and Father:

Vay[Mother(z,y) = (x = Elizabeth \y = Charles)

V(z = Diana Ay = William)

V(z = Diana Ay = Harry)], (3)
Vzy[Father(z,y) = (x = Charles Ny = William)

V(z = Charles Ny = Harry)].

Problem 1.1. Prove that Tj is consistent.
Problem 1.2. Prove that 77 is complete.

There is a simple connection between the relational database DB and the first-order
theory T7. Let us agree to identify DB; with the set of atomic sentences corresponding
to the lines of its tables:

Mother(Elizabeth, Charles),

Mother(Diana, William),

Mother(Diana, Harry), (4)
Father(Charles, William),

Father(Charles, Harry).

Then any atomic sentence in the language of 77 other than an equality is provable in
T; if it belongs to DB1, and refutable otherwise.

Problem 1.3. Prove this assertion. Would it be true without axioms (1) in the axiom
set of 71?7 Without axioms (2)?

Theory T; can be further extended by axioms defining some new predicates in terms
of Mother and Father, for instance:

Vay(Parent(x,y) = Mother(x,y) V Father(z,y)), (5)
Vz(Childless(z) = —JyParent(z,y)), (6)
Vzy(Grandparent (z,y) = 3z(Parent(z, z) A Parent(z,y))). (7)

We can also add the predicate Male and the axioms

Vzy(Father(z,y) D Male(x)), (8)
Vzy(Mother (z,y) D ~Male(x)).

Note that the axioms for Male are different from the others in that they do not provide
an explicit definition of the new predicate; they only give a sufficient condition and a
necessary condition. Accordingly, the first-order theory obtained at this stage is not
complete.

Problem 1.4. Show that the sentences Male(William) and Male(Harry) are neither
provable nor refutable from the axioms introduced above.

1.2 Logic Programs

Now we will turn to our main subject—representing declarative knowledge by logic
programs. A logic program consists of rules. A rule has two parts: the head and the
body. If the body is nonempty, then we separate it from the head by the symbol +
(Léif”):
Head < Body.

The precise syntax of the head and the body and the semantics of programs will be
defined later. Here we only give a few examples.

The definition of Mother, in the notation of logic programming, consists of the

following rules:
Mother(Elizabeth, Charles),

Mother(Diana, William),)
Mother(Diana, Harry),
—Mother(z,y) + not Mother(x,y).

Each of the first three rules has a particularly simple structure: Its body is empty,
and its head is an atomic sentence. The head of the last rule is a negated atom, and
its body is an expression containing the symbol not, called “negation as failure.” The
rule tells us that, for any individuals and y under consideration, we can conclude
—Mother(z,y) if the program gives no evidence that Mother(z,y). This rule expresses
the “closed world assumption” for the predicate Mother. The availability of this rule
allows us, for instance, to conclude —Mother(Elizabeth, Elizabeth).

The negation as failure symbol makes logic programs “nonmonotonic.” Classical
logic is monotonic in the sense that adding an axiom to a first-order theory may only
allow us to derive new theorems; no theorems proved earlier will be lost. Logic programs
with negation as failure are different: Adding a rule to a logic program may force us to
retract some of the conclusions obtained using the more limited set of rules. Consider,
for instance, program (9) without the rule Mother(Diana, Harry). Due to the closed
world assumption, this smaller program allows us to conclude =Mother(Diana, Harry).
If we now put the rule Mother(Diana, Harry) back in, this conclusion will have to be
retracted. The same phenomenon is observed in relational databases: Adding a line to
a database table invalidates a negative conclusion that could be obtained earlier.

The definition of Father is similar to (9):

Father(Charles, William),
Father(Charles, Harry), (10)
—Father(z,y) < not Father(z,y).

Here are the logic programming counterparts of definitions (5)—(7):

Parent(z,y) < Mother(z,y),
Parent(z,y) < Father(z,y), (11)
—Parent(x,y) + not Parent(z,y),

~Childless(z) + Parent(z,y),

Childless(z) < not —Childless(x), (12)

Grandparent(z,y) < Parent(zx, z), Parent(z,y),

—Grandparent(x,y) < not Grandparent(z,y). (13)

The definition of Childless is different from the others in that it includes the closed
world assumption for the negation of the defined predicate: If the program gives no
evidence that —Childless(z) then we can conclude Childless(z).

The counterpart of (8) in logic programming is

Male(z) < Father(z,y),

—Male(x) + Mother(z,y). (14)

Note that there is no closed world assumption here.
Here is one more example of a logic programming definition:

Ancestor(x,y) + Parent(z,y),
Ancestor(x,y) < Ancestor(zx, z), Ancestor(z,y), (15)
—Ancestor(z,y) + not Ancestor(x,y).

Ancestor occurs both in the head and in the body of the second rule, so that this
definition is “recursive.” It has no counterpart in first-order logic. The axiom

Vey[Ancestor(z,y) = (Parent(z,y) V 3z(Ancestor(z, z) A Ancestor(z,y)))] (16)

may seem promising as a translation of (15) into first-order logic; but it would not
allow us to prove
—Ancestor(Elizabeth, Elizabeth) (17)

or any other “negative” fact about Ancestor.

Problem 1.5. Verify that (17) is not derivable from axioms (1)—(3), (5) and (16).

1.3 Logic Programming Systems

When a body of knowledge is expressed as a logic program, logic programming systems
can be sometimes used to answer queries on the basis of this knowledge.

Prolog (for PROgramming in LOGic) is the name of a family of logic programming
systems. Here is an example of what Prolog can do. We would like to use a Prolog
system to answer queries about the relations Mother, Father and Parent. To this end,
we save rules (9)-(11) in a file, in the following form:

mother(elizabeth,charles).
mother(diana,william) .
mother(diana,harry).

father(charles,william).
father(charles,harry).

parent (X,Y) :- mother(X,Y).
parent(X,Y) :- father(X,Y).

The syntax of Prolog requires that an identifier be capitalized if it represents a variable,
but not otherwise; every rule should be followed by a period; the symbol <+ is
represented by the two characters :-. More importantly, the closed world assumption
rule is dropped from each of the definitions (9)—(11) before the program is presented to
Prolog; for Prolog, such a rule is implicit in the definition of every predicate. On the
other hand, Prolog does not permit any explicit references to classical negation. For
this reason, our definitions of Childless and Male cannot be given to a Prolog system
as directly as the others. But it is not difficult to extend Prolog so that it will know
about classical negation. In the discussion of the mathematical principles of Prolog in
this survey, a program is allowed to contain both kinds of negation.
When you call a Prolog system, it responds with a login message, for instance:

Quintus Prolog Release 3.1.2 (Sun-4, Sun0S 4.1)
Copyright (C) 1990, Quintus Corporation. All rights reserved.
2100 Geng Road, Palo Alto, California U.S.A. (415) 813-3800

Then you tell the system which file contains your set of rules, and the system opens
and “consults” (or “compiles”) it. After that, you can give the system queries, like

7- parent(elizabeth,charles).
(?- is the Prolog prompt) or
?7- mother(elizabeth,harry).

and Prolog will answer—yes to the first query, and no to the second.
A query may contain variables; this is understood as a request to find a tuple of
values of the variables that makes the query true. For example, in response to

?- parent(X,harry).

Quintus Prolog will say
X = diana.

You can ask for another solution, and the reply will be
X = charles.

If you ask for yet another answer, Prolog will reply no.
Sometimes Prolog does not produce an answer. If, for instance, the rules

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).
are added to the file, and the query
?7- ancestor(william,harry).

is given to Quintus Prolog, then, instead of saying no, it will fail to terminate. Some
query evaluation procedures have better termination properties than the one employed
in Prolog systems. For instance, Ancestor queries can be successfully handled by the
procedure called SLG.

1.4 About this Survey

In several ways, this survey of the foundations of logic programming is different from
most others available in the literature.

1. Our focus is primarily on semantics, rather than query evaluation—or, as some would
say, on the “declarative” semantics of logic programming, rather than “procedural.”
The mathematical foundations of Prolog are discussed here, but this subject is not
given the same prominence as in most other surveys.

2. We treat programs as propositional objects; rules with variables are viewed as
“schemata” that represent their ground instances.

In the next two sections, such rules appear in examples only. This is because the
difference between a rule with variables and the set of its ground instances is less
essential semantically than from the perspective of query evaluation.

3. From the very beginning, we consider programs that may contain classical negation.
Negation as failure, conceptually more difficult, is introduced only in Section 3.
Historically, however, logic programming with classical negation is a relatively recent
invention. Programs without classical negation are called “normal,” and their special
properties are discussed in Sections 2.7 and 3.8.

4. We accept the semantics of negation as failure given by the concept of an “answer
set,” and do not talk at all about alternative approaches. The “well-founded model”
is defined in Section 3.3 and the “completion” of a program in Section 3.8, because
these concepts are closely related to answer sets, but their role as stand-alone theories
of negation as failure is not discussed in any detail.

In the next section, we introduce “basic” programs that may include classical
negation, but not negation as failure. Programs with negation as failure are investigated
in Section 3. All these programs are propositional; programs with variables are the
subject of Section 4. In Section 5, we describe two extensions of logic programs with
negation as failure: disjunctive programs and default theories.

2 Basic Programs

Basic programs are programs without negation as failure. The expressive possibilities
of this subclass are much too limited for meaningful applications to knowledge

representation, but the study of its mathematical properties provides a necessary
foundation for further discussion.

2.1 Syntax

We begin with a nonempty set A of symbols, called atoms. The choice of A determines
the “language” of the programs under consideration. Atoms will be also called positive
literals; a negative literal is an atom preceded by the classical negation symbol —. A
literal is a positive literal or a negative literal. The set of literals will be denoted by Lita,
or simply Lit. For any atom A, the literals A and —A are said to be complementary.
A set of literals is inconsistent if it contains a complementary pair, and consistent
otherwise.

A basic rule is an ordered pair Head <+ Body, whose first member Head is a literal,
and whose second member Body is a finite set of literals. A basic rule with the head
Ly and the body {Ly,..., Lt} can be also written as

Lg%Ll,...,Lk. (18)

If the body is empty then < can be dropped.
A basic program is a set of basic rules. For instance, if A is {p,q,r, s} then the
rules

b,

-q,

r<p,q,

T < p, g, (19)
S < r,

S$<Dp,S,

DS & p, g, T

form a basic program. Here, as in many other examples, every atom is used in the
program at least once. In such cases, it is not necessary to specify the set of atoms
explicitly; we can describe a program simply by listing its rules, and it will be presumed
that A is the set of all symbols used in the rules as atoms.

Note that, according to this definition, the body of a rule is a set of literals, rather
than a list. There is no such thing as the order of literals, or the number of repetitions
of a literal, in the body of a rule. Similarly, a program is a set of rules, and not a list.

In applications, A is usually the set of atomic sentences formed using some supply
of object, function and predicate constants. Sets of rules in such a language are often
represented by schemata that use metavariables for ground (that is, closed) terms. For
instance, “schematic program” (9) stands for a set of 28 rules. Schematic rules are
discussed in Section 4. For the time being, we will only observe that, in the presence
of function symbols, a schematic rule can represent an infinite set of instances. For
this reason, it is important that, in the definition above, a basic program is allowed to
consist of infinitely many rules (although the body of each rule is required to be finite).

Here is an example of a program whose language has infinitely many atoms
bo,P1,-- -t

Ds,
20
Pn+1 < DPn (TL > 0) ()

2.2 The Consequence Relation

In the development of classical logic, the “consequences” of a set of sentences I' are
usually defined as the sentences that can be derived from I' and from some “logical
axioms” using some “inference rules.” To put it differently, the set of consequences of
I" is the smallest set of sentences that contains I and the logical axioms and is closed
under the inference rules.

The definition of the consequence operator for basic programs given below is, in
one way, simpler. The consequences of a program are literals. What is the counterpart
of the logical axioms and inference rules when literals only are involved? We adopt the
view that a literal follows from a set of literals “by pure logic” only when it belongs to
this set, except in the trivial case when the set is inconsistent; in this last case, every
literal follows from it. This is motivated by a simple fact of classical propositional logic:
If T is a consistent set of literals and a literal L is a consequence of I then L € T.

Problem 2.1. Prove this fact.

On the other hand, the elements of a program are rules, and not merely literals;
instead of requiring that the set of consequences of a program include all its rules, we
will require that it be “closed” under them.

This discussion suggests the following definitions. Let X be a set of literals. We
say that X is logically closed if it is consistent or equals Lit. We say that X is closed
under a basic program II if, for every rule Head < Body in II, Head € X whenever
Body C X. By Cn(II) we denote the smallest set of literals which is both logically
closed and closed under II.

Problem 2.2. Prove that such a set always exists.

The elements of Cn(II) are called the consequences of II.
A basic program II is consistent if Cn(II) is consistent, and inconsistent otherwise.
The following fact easily follows from the definition of Cn(II):

Proposition 2.1. For any basic program II,
e ifII is consistent then Cn(II) is the smallest set of literals closed under II;
e ifII is inconsistent then Cn(II) = Lit.

Let us find, for instance, the consequences of program (19). The program includes
two rules whose bodies are empty; it is clear that their heads

P, ¢ (21)

belong to every set of literals closed under (19). Furthermore, the program includes a
rule with the body p, —¢; consequently, the head

-7 (22)

of this rule belongs to every such set also. The next step is to observe that there is one
more rule in the program whose body consists of the literals that are all among (21)
and (22); its head

-8 (23)

also belongs to every set closed under the rules of (19). The set of literals generated
by now, (21)-(23), is both logically closed and closed under (19). It follows that this
is the set of all consequences of (19).

Problem 2.3. Find the set of consequences of program (20).
Note that replacing the rule

a8 & p, g, T
in (19) by a “contrapositive” rule
r<p,7g,s

would change the set of consequences of the program: (23) would not be among the
consequences anymore. Unlike conditionals in classical logic, a basic rule is, generally,
not equivalent to its contrapositive.

Proposition 2.2. For any basic programs I1y and Ily, if Iy C Il then Cn(Il;) C
CH(HQ).

The monotonicity of Cn is related to the fact that basic programs do not use
negation as failure. The consequence operator has also the following compactness

property:

Proposition 2.3. Every consequence of a basic program 11 is a consequence of a finite
subset of II.

Problem 2.4. Verify this assertion for program (20).

Let II be a basic program, and X a set of literals. We say that X is supported by
I1 if, for each literal L € X, there exists a rule Head < Body in II such that Head = L
and Body C X. A rule satisfying these conditions “supports” the presence of L in X;
it provides a “reason” for including L in X.

Proposition 2.4. For any consistent basic program II, Cn(II) is supported by II.
Problem 2.5. Verify this assertion for programs (19) and (20).

Problem 2.6. Show that without the consistency assumption this assertion would be
incorrect.

A head literal of a basic program II is the head of a rule of II.

Corollary. If a basic program Il is consistent then every consequence of Il is a head
literal of TI.

There is a simple syntactic sufficient condition for consistency. A basic program is
head-consistent if the set of its head literals is consistent.

Proposition 2.5. Every head-consistent basic program is consistent.

For instance, (20) is head-consistent. Program (19) is consistent but not head-
consistent.

2.3 Bottom-Up Evaluation

Computing the set of consequences of program (19) in Section 2.2 is an example of the
process of “bottom-up evaluation” that can be applied to any basic program. In order
to describe this process, we define, for any basic program II, the function 71 from sets
of literals to sets of literals, as follows: T7 X is

{Head : Head < Body € II, Body C X}

if X is consistent, and Lit otherwise. Thus 71X is the set of literals that can be derived
from X “in one step” using either a rule of II or “pure logic.”
It is clear that Ty is monotone. The discussion of this function below uses the
terminology and results of the theory of monotone functions reviewed in Appendix.
There is a simple relationship between the pre-fixpoints of 77 and the two closure
properties defined in Section 2.2:

Proposition 2.6. For any basic program Il and any set of literals X, X is a pre-
fixpoint of Ty iff X is both logically closed and closed under II.

Using Proposition A.1, we conclude:
Corollary. Cn(II) is the least fixpoint of Ti.

According to Proposition A.2, the union of the sets obtained by iterating 771 on the
empty set is a subset of the least fixpoint of T1;. For this particular function, the union
happens to be equal to this fixpoint:

Proposition 2.7. For any basic program II,

Cn(II) = U TH0.

n>0
For example, if IT is (19) then
THho = 0,
/I'll[0 = {pa _'Q}a

Tlgjm = {pa -9, _'r})
/I'l?)[0 = {pa -q, T, _|$}.

10

The last set is a fixpoint of Ty, so that, for every n > 3, Ti) = T30. According to

Proposition 2.7,
Cn(IT) = {p, ~q, -7, ~s}.

If IT is infinite then it is possible that none of the sets T{}0 is a fixpoint of II, so
that every next term of the sequence adds new consequences to the set accumulated
earlier.

Problem 2.7. Find the sets T{}() for program (20).

The process of bottom-up evaluation is different from the process of computation
used in Prolog—the latter is “goal-directed.” The operation of Prolog for basic
programs is discussed in Section 2.6.

2.4 Splitting

Computing the consequences of a program can be sometimes simplified by “splitting”
it into parts.

We say that a set U of literals splits a basic program II if, for every rule
Head < Body in II, Body C U whenever Head € U. If U splits II then the set of
rules in IT whose heads belong to U will be called the base of II (relative to U), and
denoted by by (IT).

For example, the set U = {p, q, ~q, r} splits program (19), and the base consists of
the first three rules of the program:

b,
-q, (24)
r < p,q.

Problem 2.8. A literal occurs in a basic program IT if it is the head of a rule of II or
belongs to the body of a rule of II. A splitting set U for a basic program II is trivial
if U contains no literals occurring in IT or contains all of them. Give an example of a
basic program that consists of 100 rules and has no nontrivial splitting sets.

If U splits II then, according to Proposition 2.8 stated below, the consequences of
IT can be computed in two steps. First, we find the set C of the consequences of the
base by (IT). Second, C is used to eliminate the elements of U from the remaining rules
of the program: If L € C' then L is “trivial” and can be deleted from the bodies of the
remaining rules; if L € U \ C then every rule with L in the body is “useless” and can
be deleted as a whole. After that, we find the consequences of the resulting program
and append them to C.

In the example, C = {p,~q} and U \ C = {q,r}. The complement of the base is

T < p, g,

S < r,

S %p,s,

D8 < p, g, T

11

We drop the rule with r in the body and delete p and —q from the bodies of the
remaining rules. The result is

_l’[‘,

§ s,

a8 — T

The set of consequences of this program is {—r, —s}. The union C'U {—r, —s} is the set
of consequences of (19).

In general, the elimination process can be described using the following notation.
For any basic program II, any set U of literals and any subset C of U, ey (I, C) stands
for the basic program obtained from IT by

e deleting each rule Head < Body such that Body N (U \ C) # 0, and
e replacing each remaining rule Head < Body by Head < (Body \ U).

Here is a theorem expressing the soundness of the splitting method for computing
Cn(II):

Proposition 2.8. Let U be a set of literals that splits a basic program II, and let
C = Cn(by (II)). If the set C UCn(ey (II\ by (II), C)) is consistent then it equals Cn(II);
otherwise, Il is inconsistent.

Problem 2.9. Verify the assertion of Proposition 2.8 for the case when U is trivial
(as defined in Problem 2.8).

Problem 2.10. Verify the assertion of Proposition 2.8 for program (19) and U = {q}.

Problem 2.11. Show that the first assertion of Proposition 2.8 would be incorrect
without the consistency assumption.

2.5 The SLD Calculus

Consider the program
p<gq,
q,
25
T s, (25)
r < D,q.

We would like to find out whether r is a consequence of this program. The program
has two rules with the head r. The first of them shows that r is a consequence of the
program if s is. There is no evidence, however, that s is a consequence, because the
program does not contain rules with s in the head. Let us try the second rule with the
head r. It shows that r is a consequence if both p and ¢ are consequences. The only
rule with the head p shows that p is a consequence if g is. It remains to determine
whether ¢ is a consequence of the program. The answer to this question is yes, because
q is the head of a rule with the empty body. We conclude that r is a consequence of
(25).

12

The reasoning that has led us to this conclusion can be symbolically represented as
follows:
=0

= {q}
= {p,q}
= {r}

The sign = here expresses “success.”

Let us determine now whether r is a consequence of the program obtained from
(25) by adding s to the body of the second rule:

p<q,
q < s,
TS,
T p,q.

(27)

As before, the attempt to establish that r is a consequence by using the first rule with
the head r fails, and the second rule leads us to the question whether ¢ is a consequence.
The program contains one rule with the head ¢, and its body is s. Consequently, we
need to determine whether s is a consequence. Since s is not the head of any rule, it
appears that the answer to this question must be no, so that r is not a consequence of
(27).

The reasoning that has led us to this conclusion can be symbolically represented
by a tree:

= {s}
:({Q} (28)
= {s} ={{p,q}
={r}

The sign = expresses “failure.”

Figures (26) and (28) are examples of derivations in the “SLD calculus” that we
will now introduce.’

A goal is a finite set of literals. In the SLD calculus for a basic program II, the
derivable objects are expressions of the forms |= G and = G, where G is a goal. The

!The letters S, L and D are the initial letters of the words “selection,” “linear” and “definite”—the
names of three ideas that were historically associated with goal-directed search in logic programming.
The notion of a definite clause and its relation to logic programs are discussed in Section 2.7 below.
The other two words come from the theory of resolution in automated reasoning.

13

only axiom is

0.
In the inference rules, the following notation is used: For any literal L, Bodies(L) is
the set of the bodies of all rules in II with the head L. There are two inference rules,
one for proving success and one for proving failure:

=GUB

(S) =GU{L] if B € Bodies(L)

s{GUB for all B € Bodies(L)
JGU{L}

(F)

Note that the number of premises of (F') equals the cardinality of Bodies(L). In
particular, it can be zero or infinite.?

Figure (26) is a derivation in the SLD calculus for program (25). Every horizontal
bar in this figure represents an application of (S). For instance, the transition from
E {p,q} to = {r} at the end of the derivation is an application of (S) with G = 0,
L =r and B = {p,q}. Here B € Bodies(L) because

Bodies(r) = {{s},{p,q}}.

Figure (28) is a derivation in the SLD calculus for (27), in which every bar is an
application of (F'). The bars on top of the two branches of (28) represent applications
of (F') with zero premises.

If |= G is derivable in the SLD calculus for IT then we say that G succeeds relative
to II. If 4 G is derivable then we say that G fails relative to II. For instance, {r}
succeeds relative to (25) and fails relative to (27).

Problem 2.12. Show that the goal {¢} fails relative to the program that consists of
the rules

Pn+1 < Pn
(n>0).
Proposition 2.10. For any basic program II, no goal both succeeds and fails relative
to II.

Problem 2.13. Show that the goal {p} neither succeeds nor fails relative to the
program
p < p. (30)

The following proposition expresses the soundness of the SLD calculus.

*For a calculus with infinitary rules, a derivation is defined as a (possibly infinite) tree without
infinite branches, whose nodes are derivable objects such that every node either (a) is a leaf and an
axiom, or (b) can be obtained by applying an inference rule to its successor nodes.

14

Proposition 2.11. For any basic program Il and any literal L,
o if {L} succeeds relative to Il then L is a consequence of II,
e if Il is consistent and {L} fails relative to II then L is not a consequence of II.

This proposition is applicable to programs (25) and (27), because they are head-
consistent and consequently consistent (Proposition 2.5).

Note that the SLD calculus may be unsound for failure if the program is inconsistent.
For instance, if IT is inconsistent and L is not a head literal of IT then L is a consequence
of IT that fails: = {L} can be derived by one application of the failure rule to the empty
set of premises.

If the program is consistent then the success rule of the SLD calculus is complete:

Proposition 2.12. For any consistent basic program Il and any consequence L of II,
{L} succeeds relative to II.

The failure rule is generally incomplete even for consistent programs. For instance,
{p} does not fail with respect to (30). We will now define a syntactic property of basic
programs that guarantees the completeness of the SLD calculus for failure.

A level mapping is a function from literals to ordinals. A basic program II is said to
be hierarchical if there exists a level mapping A such that, for every rule Head < Body
in TII,

A(Head) > Lrengéy)\(L). (31)

For instance, programs (25) and (27) are hierarchical: for each of them, we can take

Program (20) is hierarchical also: take A(p,) = n. To show that (29) is hierarchical,
define

)‘(pn) =n,)\(Q) =w.

Program (30) is not hierarchical because, for this program, condition (31) turns into
A(p) > A(p). The programs

p<gq,

q<0p

and
Pn < Pntl (n>0)

are not hierarchical either.
Problem 2.14. Determine whether program (19) is hierarchical.
Here is a completeness theorem for the failure rule:

Proposition 2.13. For any hierarchical basic program Il and any literal L that is not
a consequence of Il, {L} fails with relative to II.

15

2.6 Propositional Prolog

The work of Prolog, for a program without negation and variables, can be viewed as
an attempt to establish that a goal G succeeds or that it fails (to “evaluate” G) by
constructing a derivation of one of the expressions = G, =/ G in the SLD calculus using
“backward chaining.” This kind of search was used in the examples at the beginning
of Section 2.5.

Here is a general description of the operation of Prolog. The task is to evaluate
a goal G relative to a finite basic program II. If G is empty then = G is an axiom.
Otherwise, in order to find a rule application that leads to one of the expressions = G,
= G, the goal G is represented in the form G’ U{L}; L is called the “selected subgoal”
of G. Prolog attempts to evaluate, one by one, the goals G' U B for all B € Bodies(L).
If at least one of these goals succeeds then = G can be derived by (S). If they all fail
then = G can be derived by (F).

At the beginning of this process, the given program is represented as the list of
its rules, with the body of every rule represented as the list of its elements. Similarly,
the goal G is represented as a list. The order in which the elements of all these lists
are initially arranged can affect the search process. Specifically, it determines how
subgoals are selected (Prolog tries the leftmost element of G first) and in what order
the elements of Bodies(L) are considered when the bottom-up application of (S) or
(F) is attempted. Ordering atoms and rules in a logic program “in the right way” is
an important part of the art of Prolog programming.

Consider, for instance, the operation of Prolog on program (25) and the goal {r}.
The initial stage of the process can be symbolically represented by the expression

AL {r}.

Here 1l is a label that will be replaced by either = or = at the end of the computation.
This expression is the first in the chain of “partial derivations” that describes the
operation of Prolog on the given goal. The first element of Bodies(r) is {s}, so that

the next partial derivation is
AL {s}

AL {r}

Then we observe that Bodies(s) is empty, so that =| {s} can be derived by one
application of (F') to the empty set of premises. This leads us to the partial derivation
in which the label L in front of {s} is replaced by the failure symbol:

(F) ———

AL {r}

It remains to evaluate the second element of Bodies(r), that is, {p,q}. First we

16

form the partial derivation

P
= {s} 1L {p,q}

AL {r}

As soon as we know whether 1L in front of {p, ¢} turns into |= or o, the evaluation of
{r} will be completed. Specifically, if a derivation of = {p,q} is found then it will be
appended to (32) to form a derivation of = {r}:

P
= {s} = {p,q}
= {r}

If, on the other hand, a derivation of |= {p,q} is found then we will discard the
derivation of = {s} in (32) and obtain a derivation of |= {r}:

(5)
(5)

= {p,q}
E {r}

In the process of evaluation of {p, ¢}, Prolog designates p as the selected subgoal,
because it is the leftmost element of the list p,q. The next partial derivation is

1L {q,q}

= {s} 1 {p,q} (33)

AL {r}

(F)

In order to remain faithful to the actual operation of Prolog, it is important at this
stage not to remove repetitions in the expression {g,q}. This expression stands for a
singleton set that is represented as a list of length 2.

On the next step, the first member of the list g, ¢ is selected, so that L = ¢ and
G' = G = {q}. The next partial derivation is

A {q}
1L {g,q}

= {s} 1L {p,q}

AL {r}

(F)

17

After that, we form the partial derivation

10

A {q}
o {q,q} (34)

= {s} 1L {p,q}

AL {r}

(F)

Here we recognize that = () is an axiom. All occurrences of the label 1L in the right
branch of (34) are replaced by |=, and the left branch is discarded. The final product
of this search process is the derivation

=0
S)
= {q}

S) —
= {q} (35)
S) —
= {p,q}
(S)

=A{r}

Note that this derivation includes a redundant step that is absent from (26). The
difference is due to the fact that Prolog does not check the list representations of goals
for repetitions.

If we start with program (27) instead of (25) then the first several partial derivations
constructed in the process of evaluating {r} are going to be the same, up to (33). After
that, the partial derivation

AL {s,q}
1L {q,q}

= {s} 1L {p,q}

AL {r}

(F)

will be formed. Then s will be selected, and = {s, ¢} will be derived from the empty
set of premises. Having replaced each I by = in the right branch of this partial

18

derivation, we will get the derivation

(F) ——
= {s,4}
(F) ——
= {q}
(F) (F)

= {s} ={p,q}
= {r}

(F)

The goal {r} has failed.
Problem 2.15. Describe the work of Prolog on the program

p<q,r
péT,S
T U,V
s
U

and the goal {p}. How would the process be affected by appending v to the program
as an additional rule?

Problem 2.16. Describe the work of Prolog on the program

p <D,
p

and the goal {p}.

The last example demonstrates the incompleteness of the Prolog search strategy:
Prolog never finds the one-step derivation of = {p} in the SLD calculus for this
program. This is similar to the case of nontermination of Prolog mentioned at the
end of Section 1.3.

2.7 Normal Programs

A Dbasic rule or program that does not contain the negation symbol — is said to be
normal. Many programs that we have used as examples are normal. Normal basic
programs are head-consistent. Consequently, any normal basic program is consistent
(Proposition 2.5), and any consequence of such a program is an atom (Corollary to
Proposition 2.4).

Arbitrary basic programs can be reduced to normal basic programs in the following
way. For every atom A € A, select a new symbol A', and let A’ be the set of these
new symbols. For any L € Lita, let Norm(L) be the symbol from A U A’ defined as
follows:

Norm(A) = A, Norm(—A) = A’ (AcA).

19

The map Norm is extended to sets of literals, basic rules and basic programs in a
natural way:

Norm(X) = {Norm(L) : L € X},
Norm(Head < Body) = Norm(Head) < Norm(Body),
Norm(IT) = {Norm(R) : R € IT}.

Thus, to transform IT into Norm(IT), we simply replace every negative literal —=A in IT
by A'. Tt is clear that Norm is a one-to-one map of the set of basic programs onto the
set of normal basic programs over the extended set of atoms A U A’.

If, for example, IT is (19), then Norm(II) is

b,

q,

r<p,q,

r'<—p,q, (36)
54T,

5+ p,s,

s’ < p,q,r.

By Contr we denote the set of contradiction rules

A<+ B,B’,
A"+~ B,B'
for all pairs of distinct atoms A, B € A.

Proposition 2.14. For any basic program II,
Norm(Cn(II)) = Cn(Norm(IT) U Contr).
Moreover, if Il is consistent then
Norm(Cn(II)) = Cn(Norm(II)).

Problem 2.17. Show that the second assertion would not be correct without the
consistency assumption.

Proposition 2.14 shows that Norm is a one-to-one correspondence between the
consequences of IT and the consequences of the normal basic program Norm(IT)U Contr;
if IT is consistent then the contradiction rules can be dropped.

A normal basic program can be encoded by a propositional formula. The function
o from normal basic rules to propositional formulas is defined by

¢(Head < Body) = /\ A D Head.
A€ Body

20

For any normal basic program II, ¢II stands for the set of formulas @R for all rules
R € II. For example, if IT is (36) then ¢II consists of the formulas

b,

q,

pAgOT,
pAg D7,
rD s,
pASDs,
pAg AP DS

The following proposition describes the relationship between the set @Il and the
concept of closure under II defined in Section 2.2. Recall that, in propositional logic,
an interpretation is a function from atoms to truth values, and a model of a set of
formulas is an interpretation that satisfies all formulas in the set. We will identify an
interpretation with the set of atoms to which it assigns the value true.

Proposition 2.15. For any normal basic program 11, an interpretation I is a model
of oIl iff I is closed under II.

Corollary 1. For any normal basic program II, Cn(II) is the least model of II.

Corollary 2. For any normal basic program II, Cn(II) is the set of atoms entailed
by II.

A clause is a disjunction of literals. A clause is definite if exactly one of its literals
is positive. It is clear that, for any normal basic rule R, the formula @R is equivalent
to a definite clause, and, conversely, every (propositional) definite clause is equivalent
to a formula of this form. Corollaries 1 and 2 show that recognizing the consequences
of a normal basic program amounts to recognizing the atoms that belong to the least
model of a set of definite clauses, or, equivalently, the atoms that are entailed by such
a set.

3 Negation as Failure

Now we turn to the study of logic programs with negation as failure. The examples
discussed in Section 1.2 are (schematic representations of) programs of this kind.

3.1 Answer Sets

A rule element is a literal possibly preceded by the negation as failure symbol not. A
rule is an ordered pair Head < Body, whose first member Head is a literal, and whose
second member Body is a finite set of rule elements. For any set X of literals, we will
denote the set {not L : L € X} by not(X). Then any rule can be represented as

21

Head <+ Pos U not(Neg), for some finite sets of literals Pos, Neg. The rule with the
head Ly and the body {L1,..., Ly, not Lyi1,...,not Ly} will be also written as

Ly« Lyq,...,Ly,not Lm+1,...,’/l,0t Ly,. (37)
A program is a set of rules. For instance,

p,

q < p,not r,
q + r,not p,
T < p,not s

(38)

is a program. This program does not contain the classical negation symbol —; the
syntax of rules allows us to insert this symbol in front of any of the atoms p,q,r,s
anywhere in the program.

We would like to generalize the definition of Cn(II) from Section 2.2 to arbitrary
programs.

Intuitively, the presence of a rule element not L in the body of a rule limits the
applicability of the rule to the case when the program as a whole provides no possibilities
for deriving L. For instance, rules (38) differ from the basic rules

b,

%
g,
r<p

in that
e the second rule of (38) allows us to derive ¢ from p only if r cannot be derived,
e the third rule of (38) allows us to derive ¢ from r only if p cannot be derived,
e the last rule of (38) allows us to derive r from p only if s cannot be derived.

This informal description of how the symbol not “blocks” the application of program
rules is circular, because it characterizes the process of applying rules in terms of what
can be derived using these rules. Nevertheless, for any set X of literals, that description
makes it possible to “test” the claim that rules (38) allow us to derive the elements of
X and nothing else.

Take, for instance, X to be {p,r}. If p and r are indeed derivable, and the other
literals are not, then the second rule of (38) is “blocked” in view of the presence of
not r in its body, and the third rule is “blocked” by the presence of not p; the other
two rules are not “blocked.” Then the effect of rules (38) is the same as the effect of

b,
rTp (40)

22

—the subset of (39) obtained by deleting its second and third rules. This is a basic
program. The set of its consequences is {p,r}, which is exactly the set X that we
initially assumed to be the set of derivable literals. This fact confirms that {p,r} was
a “good guess.”

Generally, there can be several “good guesses” about the result of application of a
given set of rules. Consider, for instance, the program

p < not q,
q <+ not p,
T D,
r<q.

(41)

There are two reasonable conjectures about what can be derived using these rules. One
is that we can derive p and r, but not ¢g. If so, then (41) has the same meaning as the
basic program

b,

r < p, (42)

r<q.

The set of consequences of this program is, indeed, {p, r}. The other possibility is that
g and r can be derived, but not p. In this case, (41) has the same meaning as the basic
program

q)

r < p, (43)

r < q,

whose consequences are, indeed, ¢ and r.

This example leads us to the view that negation as failure can make the rules of
a program “nondeterministic.” There can be several “correct” ways to organize the
process of deriving literals using the rules of a program that contains negation as failure.
Each of them produces a different set of literals; these sets will be called the “answer
sets” for the program. A consequence of a program is a literal that is guaranteed to be
produced no matter which derivation process is selected—a literal that belongs to all
answer sets. For instance, the only answer set for (38) is {p, r}, so that the consequences
of this program are p and r; the answer sets for (41) are {p,r} and {¢,r}, so that its
only consequence is r.

In order to give the definition of an answer set, we need a general description of the
process of reducing an arbitrary program to a basic program that was used above to
obtain (40) from (38), and (42), (43) from (41).

Let IT be a program, and X a set of literals. The reduct of Il relative to X is the
basic program obtained from II by

e deleting each rule Head < Pos U not(Neg) such that Neg N X # (), and

e replacing each remaining rule Head < Pos U not(Neg) by Head < Pos.

23

This program will be denoted by IIX. We say that X is an answer set for II if
Cn(IT¥) = X.

It is clear that every answer set is logically closed. We have seen that a program
can have one or several answer sets. Some programs have no answer sets, for instance

p < not p. (44)

A consequence of a program is a literal that belongs to all its answer sets.
Alternatively, the consequences of a program can be characterized as the literals that
belong to all its consistent answer sets. It is clear that the set of consequences is
logically closed.

If a program IT is basic then its reduct relative to any set of literals is II. It follows
that the only answer set for a basic program IT is Cn(II), so that the new definition of a
consequence, applied to a basic program, is equivalent to the one given in Section 2.2.

For the set of consequences of a program II, we will use the same notation Cn(II)
as in the basic case.

On programs with negation as failure, the consequence operator is not monotone.
For instance, the set of consequences of {p < not ¢} is {p}; if we add g to this program
as another rule, the set of consequences will be {¢}. In this sense, logic programming
with negation as failure is a “nonmonotonic formalism.”

Problem 3.1. Find all answer sets for the program

p < not q,
q < not p,
r < not 7,
T 4 D.

(45)

Problem 3.2. Find all answer sets for the program

Pny1 < not p, (n >0). (46)
Problem 3.3. Find all answer sets for the program

pn < not ppy1 (0 >0). (47)

Proposition 3.1. If X and Y are answer sets for a program Il and X C Y then
X=Y.

Corollary. Every program Il satisfies exactly one of the following conditions:
e IT has no answer sets,
e the only answer set for Il is Lit,

e II has an answer set, and all its answer sets are consistent.

24

The consistency of a program is defined as it was defined for basic programs in
Section 2.2: A program is consistent if the set of its consequences is consistent, and
inconsistent otherwise. In the first two cases listed in the statement of the corollary, I1
is inconsistent and Cn(II) = Lit. In the third case, II is consistent.

The definition of closure under a program given in Section 2.2 is extended to
arbitrary programs as follows. A set X of literals is closed under a program II if,
for every rule Head + Pos U not(Neg) in II, Head € X whenever Pos C X and
NegnN X = 0.

Proposition 3.2. Every answer set for a program 11 is closed under II.

The set of consequences of II, however, is not necessarily closed under II. This can
be illustrated by program (41).

We say that a set X of literals is supported by II if, for each literal L € X, there
exists a rule Head < Pos U not(Neg) in II such that

Head = L, Pos C X, NegN X = 0.

Proposition 2.4 can be generalized to arbitrary programs in the following way:
Proposition 3.3. Any consistent answer set for a program Il is supported by II.

As in the case of basic programs, a head literal of a program II is the head of a rule
of II.

Corollary 1. Any element of any consistent answer set for a program II is a head
literal of TI.

Corollary 2. Ifa program Il is consistent then every consequence of I1 is a head literal
of II.

As in the case of basic programs, a program II is head-consistent if the set of its
head literals is consistent. Proposition 2.5 can be generalized to arbitrary programs as
follows:

Proposition 3.4. If a program II is head-consistent then every answer set for Il is
consistent.

This proposition tells us that a head-consistent program cannot belong to the second
of the three groups listed in the corollary to Proposition 3.1. It is possible, however,
that a head-consistent program belongs to the first group, so that such a program can
be inconsistent. For instance, (44) is a head-consistent program without answer sets.
An additional condition needed to guarantee the existence of an answer set, called
“order-consistency,” is discussed in Section 3.5.

3.2 Tight Programs

According to Propositions 3.2 and 3.3, every consistent answer set is closed and
supported. Proposition 3.5 below shows that for a large class of programs the converse is

25

also true, so that the two properties, closure and supportedness, completely characterize
the class of consistent answer sets for programs in this class.

A program II is tight if there exists a level mapping A such that, for every rule
Head < Pos U not(Neg) in II,

A(Head) > max A(L).
LePos
Note that this condition does not impose any restriction on Neg, that is, on the rule
elements that include negation as failure. If Pos = () in every rule of the program then
the program is trivially tight. A basic program is tight iff it is hierarchical.

Problem 3.4. Determine which of the programs (38), (41), (44)-(47) are tight.

Proposition 3.5. For any tight program Il and consistent set X of literals, X is an
answer set for II iff X is both closed under I1 and supported by II.

Problem 3.5. Show that this assertion would be incorrect without the assumption
that II is tight.

Any program can be “tightened” at the price of introducing infinitely many new
atoms. For every A in the set A of atoms and for every integer n # 0, let A™ be a new
symbol. For every n > 0, define

(~Ay = A"

for any atom A, and
X"={L" : LeX}

for any set X of literals. Intuitively, A™ says that A can be “established in n steps”
using the rules of the program; A™" says that A can be “refuted in n steps.”

Let A* be the extended set of atoms obtained from A by adding the new symbols
A™ (n # 0). The tightening of II is the program with the set of atoms A that consists
of

e the rules
Head™ ™ « Pos™ U not(Neg)

for every rule Head < Pos U not(Neg) in II and every n > 0, and

e the rules
A+ A"
A+ A"
for every A € A and every n > 0.
For example, the tightening of
p < p,not g,
—-p < notp

26

consists of the rules

p" < p", not g,
p_"_l < not p,
p < p",

—p<p ",
q<q",

g =g

for all n > 0.
The tightening of any program is tight: define

AA™) = [nl, A(4) = w.
The tightening of a program is its “conservative extension”:

Proposition 3.6. A subset of Lita is an answer set for a program Il iff it can be
represented in the form X N Lita, where X is an answer set for the tightening of II.

Corollary. IfII' is the tightening of a program II then
Cn(TT) = Cn(IT') N Lita .

3.3 Well-Founded Consequences

In Section 2.3 we saw that the set of consequences of a basic program II is the
least fixpoint of a certain monotone function, called 717, and that this set can be
approximated from below by iterating that function on the empty set. A similar
construction can be defined for programs with negation as failure. However, the
monotone function involved in it is defined in a more complicated way than Tfy. Also,
the least fixpoint of this function is sometimes a proper subset of the set of consequences,
so that some consequences may be impossible to reach by iterating it—even for a finite
program. Nevertheless, this function and its fixpoints are important, both theoretically
and computationally.

For any program II, the function g from sets of literals to sets of literals is defined
by the equation

ynX = Cn(IT¥).

It is clear that the answer sets for II can be characterized as the fixpoints of 7.
Proposition 3.7. For any program II, v is anti-monotone.

As discussed in Appendix, it follows that 'y%[is monotone, and its least and greatest
fixpoints limit the fixpoints of ~11 from below and from above. The literals that belong
to the least fixpoint of 7Z are said to be well-founded relative to II. The literals that
do not belong to the greatest fixpoint of 44 are unfounded relative to II. Thus any
program partitions the set of literals into three groups: the well-founded literals, the
unfounded literals, and the rest.

The second part of Proposition A.3, in application to this case, can be stated as
follows:

27

Proposition 3.8. Any answer set for a program I1
e includes all literals that are well-founded relative to II, and
e includes no literals unfounded relative to II.
Corollary. For any program Il and any literal L,
o if L is well-founded relative to Il then L is a consequence of 11,

e if Il is consistent and L is unfounded relative to II then L is not a consequence
of II.

The Corollary to Proposition A.3, in application to this case, can be stated as
follows:

Proposition 3.9. If every literal is either well-founded or unfounded relative to II
then the set of well-founded literals is the only answer set for II.

If IT is finite then the literals that are well-founded or unfounded relative to II can
be found by iterating v on the empty set or on the set of all literals, as discussed at
the end of Appendix. For instance, in case of program (41),

o =0,
w0 ={p,qr}
0 =0,

so that () is the least fixpoint of 7%, and {p, q,r} is its greatest fixpoint. We see that
the set of well-founded literals is empty, so that p is a consequence of the program that
is not well-founded. The only unfounded literals are the negative literals —p, =g, —r.

Problem 3.6. Find the well-founded and unfounded literals for programs (38) and
(45)—(47).

3.4 Splitting a Program with Negation as Failure

The splitting process described in Section 2.4 for basic programs can be extended to
arbitrary programs as follows. We say that a set U of literals splits a program IT if, for
every rule Head < Pos U not(Neg) in II, Pos U Neg C U whenever Head € U. If U
splits IT then the set of rules in IT whose heads belong to U is the base of II (relative
to U), denoted by by (IT).

For instance, program (38) is split by the sets {p} and {p, s} (and by several others).
The base of (38) relative to each of these two sets consists of its first rule, p.

For any program II, any set U of literals and any subset C of U, ey/(II, C) stands
for the program obtained from II by

e deleting each rule Head < Pos U not(Neg) such that Pos N (U \ C) # 0 or
NegNC # 0,

28

e replacing each remaining rule Head < Pos U not(Neg) by

Head < (Pos \ U) U not(Neg \ U).

Proposition 3.10. Let U be a set of literals that splits a program II. A consistent
set of literals is an answer set for I1 iff it can be represented in the form Cy U Co, where
C is an answer set for by (IT) and Cs is an answer set for ey (I1 \ by (I1), Cy).

This theorem suggests the following approach to computing the consistent answer
sets for a program II that is split by some set U. First find all answer sets for the base
by (II). For each of these sets C, compute the program ey (I \ byr(IT), C1), and find
all its answer sets. For each of these sets Cs, form the union C; U Cs. The consistent
unions found in this way are the consistent answer sets for II. The intersection of all
these consistent unions is Cn(II).

Take program (38) as an example. Let U = {p, s}. Then by (II) is the basic program
whose only rule is p, and the only answer set Cy for this program is {p}. Furthermore,
IT\ by(II) is

q < p,not r,
q < r,not p,
T < p, not s,

and eU(H \ bU(H), Cl) is
q < not r,
T.

The only answer set Co for this program is {r}. We conclude that the union of C;
and Cy, that is, {p, 7}, is the only consistent answer set for (38). (By the corollary to
Proposition 3.1, it follows that (38) has no other answer sets.)

As another application, consider rules (9)—(15) from the royal family example
(Section 1.2). Recall that metavariables z, y, z in the schematic rules stand for the
constants FElizabeth,...,Harry. This program II is split by the set U consisting of
all positive Mother, Father, Parent, Grandparent and Ancestor literals, all negative
Childless literals, and all Male literals. The base by (II) is a consistent basic program;
let C1 be the set of its consequences. The remaining rules II \ by (II) are the closed
world assumptions, and all rules in ey (IT\ by (IT), C1) are quite simple: Their bodies are
empty, and their heads are complementary to the Mother, Father, Parent, Childless,
Grandparent and Ancestor literals in U\ Cy. This program is identical to its only answer
set C. According to Proposition 3.10, C; U Cs is the only answer set for (9)-(15).

The following problem shows how this example can be generalized.

Problem 3.7. The closed world assumption rule for a literal L is the rule
L+ not L,

where L stands for the literal complementary to L. Let II be a program, let C be a
consistent set of literals that do not occur in II, and let IT' be the program obtained

29

from II by adding the closed world assumption rules for all literals in C'. (a) Show that,
if X is a consistent answer set for II, then

Xu{LeC:L¢X}

is a consistent answer set for II. (b) Show that every consistent answer set for IT' can
be represented in this form for some consistent answer set X for II.

3.5 Stratified and Order-Consistent Programs

Both examples used above to illustrate the process of splitting belong to an important
class of programs, called “stratified.” This property guarantees that the program is
split by a nonempty set U such that the base of the program relative to U does not
contain negation as failure. Moreover, the result of eliminating the elements of U from
the rest of the program is again a stratified program. Consequently, by repeating the
splitting process several times, we can reduce any finite stratified program to a series
of basic programs.

A program II is stratified if there exists a level mapping A such that, for every rule
Head < Pos U not(Neg) in II,

A(Head) > maxyepos A(L),

A(Head) > maxycneg A(L). (48)

It is clear that any basic program is stratified (take A identically equal to 1). For

program (38), we can take
9, ifL=gq,
NL) =141, ifL=r

0, otherwise.

Programs (41) and (44) are not stratified.

Any stratified program is split by the set of atoms on which A is minimal, and the
base of the program relative to this set is a basic program.

The following theorem gives another important property of stratified programs:

Proposition 3.11. A stratified program has at most one answer set.

“Order-consistency” is a condition more general than stratification, which, in
combination with head-consistency (Section 3.1), implies the existence of an answer
set. Its definition uses the following notation. For any program II and any literal
L, Hj-: and II; are the smallest sets of literals such that L € Hj-: and, for every rule
Head < Pos U not(Neg) in II,

e if Head € H}t then Pos C H}f and Neg C II7,

o if Head € II; then Pos C II; and Neg C Hj{.

30

We say that a program II is order-consistent if there exists a level mapping A such that
A(L2) < A(L1) whenever Ly € II} NII .
For example, a program is order-consistent if, for every literal L,

I NII; = 0.

(Programs with this property are called strict.) To see why all stratified programs are
order-consistent, note that for any level mapping \ satisfying (48) and for any literals
Ll and L2,

e A\(L3) < A(Ly) whenever Ly € Hzl,
o A(L2) < A(L1) whenever Ly € TI .

A finite program II is order-consistent iff, for every atom A, A ¢ IT,.

Problem 3.8. For each of the programs (41) and (44) determine whether it is (a)
strict, (b) order-consistent.

Proposition 3.12. If a program is head-consistent and order-consistent then it is
consistent.

From the last two propositions we see that a program which is both head-consistent
and stratified has a unique answer set.

3.6 The SLDNF Calculus

The definition of the SLDNF calculus associated with a program II generalizes the
definition of the SLD calculus introduced in Section 2.5 to programs with negation as
failure. Its derivable objects are again expressions of the forms = G and = G, except
that a goal G is now defined as a finite set of rule elements. The axiom is the same as
before,

= 0.

There are four inference rules:

= GUB

(5P) EGoqLy

if B € Bodies(L)

{GUB for all B € Bodies(L)
JGU{L}

~¢)

= GU{not L}

(FP)

(SN)

={L
(FN) = G|U %ngt L}

31

As in Section 2.5, Bodies(L) stands here for the set of the bodies of all rules in II
whose head is L. The success and failure rules for positive subgoals, (SP) and (FP),
look the same as rules (S) and (F') of the SLD calculus. The rules for negative subgoals,
(SN) and (F'N), allow us to derive success from failure and failure from success. As a
result, failure expressions can occur now in derivations of success expressions, and the
other way around.

For instance, here is a derivation in the SLDNF calculus for program (38):

(FP)
=0 = {s}
(SN)
E {not s}
sp)y
= {p,not s =0
spy ... (S
=A{r} = {p}
(PN) (FN)
| {p, not r} | {r,not p)
(FP)

= {q}

If = G is derivable in the SLDNF calculus for IT then we say that G succeeds
relative to II. If | G is derivable then we say that G fails relative to II. For instance,
the derivation above demonstrates that {¢} fails with respect to program (38).

Propositions 2.10 and 2.11 can be extended to programs with negation as failure in
the following way:

Proposition 3.13. For any program 1, no goal both succeeds and fails relative to II.

Proposition 3.14. For any program II and any literal L,
e if {L} succeeds relative to Il then L is a well-founded consequence of TI,
o if II is consistent and {L} fails relative to Il then L is unfounded relative to II.

The last proposition is the soundness theorem for the SLDNF calculus. Its second
half, in combination with Proposition 3.9 and its corollary, shows that if {L} fails with
respect to a consistent program II then L does not belong to any answer set for II, nor
is a consequence of II.

Proposition 3.14 shows also that if L is neither well-founded nor unfounded then
{L} neither succeeds nor fails. For instance, the goals {p}, {¢}, {r} neither succeed
nor fail relative to program (41).

Problem 3.9. Determine for which values of n the goal {p,} succeeds relative to
program (46), and for which values of n it fails.

32

The concept of a hierarchical program (Section 2.5), used in the statement of the
completeness theorem, is extended to programs with negation as failure in the following
way. We say that a program II is hierarchical if there exists a level mapping A such
that, for every rule Head < Pos U not(Neg) in II,

A(Head) > max_ A(L).
LePosUNeg
For example, program (38) is hierarchical; programs (41) and (44) are not. It is clear
that any hierarchical program is stratified, and consequently has at most one answer
set.

Proposition 3.15. Let I be a hierarchical program. For any literal L,
e if Il is consistent and L is a consequence of Il then {L} succeeds relative to II,

e if L is not a consequence of I then {L} fails relative to II.

3.7 Prolog with Negation as Failure

In order to describe the work of Prolog in the presence of negation as failure, we need
to note the following fact:

Proposition 3.16. For any goals G1 and G4, if Gy fails then G1 U G4 fails also.
This proposition shows that adding the “thinning” rule

4G
(T) :1 Gq U1G2

to the calculus described above would not change the set of derivable expressions.

The work of propositional Prolog can be described as proof search in the calculus
consisting of the rules (SP), (FP), (SN), (FN) and (T'). Search proceeds as described
in Section 2.6, except that now the selected subgoal can include the negation as failure
symbol. If G, the goal to be evaluated, is represented as G'U{L} then the rule applied in
the derivation last will be either (SP) or (FP). If G is represented as G'U{not L} then
the rule applied in the derivation last will be (SN), (FN) or (T); Prolog determines
which one by attempting to evaluate {L}. If this goal succeeds then =| G can be derived
by (FN). If it fails then Prolog evaluates G'. If G’ succeeds then = G will follow by
(SN). If G’ fails then 5 G will follow by (7).

Consider, for instance, the operation of Prolog on the program that consists of one
rule

p < not q

and the goal {p}. The search process first produces the partial derivation

1L {p}

33

then
1L {not ¢}

1L {p}

and then
AL {q}

1L {not ¢}

{r}

Since Bodies(q) is empty, we next arrive at

(FP)
= {q}

U {not ¢}

1L {p}

and then at
(FP)

1L = {g}

U {not ¢}

1L {p}

The next step leads to the derivation

(FP)
=0 = {q}

= {not q}
= {p}

(SN)

(SP)

Consider now the program
p < not g,

q

and the same goal {p}. The first three partial derivations will be the same as before,

34

and then we will arrive at the derivation

=0

sp)
F {4}

(FN)

= {not ¢}

(FP)
= {p}

Finally, consider the program

p < not r,not q,
q

and the same goal {p}. The search process leads first to the partial derivation

AL {not r,not q}

AL {p}
then to

AL {r}

1L {not r,not q}

AL {p}

and then to
(FPPy
= {r}

1L {not r,not q}

A {p}
Next Prolog evaluates the goal {not ¢q}. We obtain first

(FP)
AL {not ¢} = {r}

1L {not r,not q}

1L {p}

35

then

AL {q}
(FP)

1 {not ¢} - {r}

AL {not r,not q}

1L {p}

and then
10

AL {q}
(FP)

AL {not ¢} = {r}

AL {not r,not q}

1L {p}

The final result is the derivation

=0
(spy
= {4}
| {not g}
= {not r, not q}

= {r}

(FN)

(T)

(FP)

Problem 3.10. Describe the work of Prolog on the program

p < not q,
g+ notrs

and the goal {p}. How would the process be affected by inserting not in front of s in

the last rule?

3.8 Normal Programs with Negation as Failure

A rule element, rule or program is normal if it does not contain the classical negation
symbol —. By Proposition 3.4, every answer set for a normal program is consistent. By
Corollary 1 to Proposition 3.3, it follows that every answer set for a normal program is
a set of atoms. Program (44) is an example of a normal program without answer sets.

36

In Section 2.7, we defined an encoding Norm of basic programs by normal basic
programs over a larger set of atoms. In order to extend this encoding to arbitrary rules
and programs, we define

Norm(Head <+ Pos U not(Neg))

to be
Norm(Head) < Norm(Pos) U not(Norm(Neg)).

Here are two generalizations of Proposition 2.14 to arbitrary programs:

Proposition 3.17. For any program Il and any set X of literals, the following
conditions are equivalent:

(i) X is an answer set for II,
(ii) Norm(X) is an answer set for Norm(II) U Contr.
Moreover, if X is consistent then these conditions are equivalent to
(iii) Norm(X) is an answer set for Norm(II).

Corollary. For any program II,
Norm(Cn(IT)) = Cn(Norm(IT) U Contr).

Adding Contr in the right-hand side of this equality may be needed even if II is
consistent. This can be seen from the following counterexample:

p < not q,
q < not p,

In Section 2.7, we defined a function ¢ that encodes normal basic rules by
propositional formulas. The extension of this function to normal rules with negation
as failure, defined below, replaces negation as failure by classical negation. For any set
B of normal rule elements, by B"°! we denote the conjunction of the literals obtained
from the elements of B by substituting — for each not. Then, for any normal rule
Head < Body, we define:

¢(Head + Body) = Body™" > Head.

For instance,
¢(p + g, not)
is
g/\—-rDp.

For any normal program II, ©II stands for the set of formulas @R for all rules R € II.
The following theorem is a counterpart of Corollary 1 to Proposition 2.15.

37

Proposition 3.18. For any normal program II,
e any answer set for I1 is a model of oIl

e no proper subset of an answer set for II is a model of ¢Il.

In other words, an answer set for a normal program II is a “minimal model” of II.
The converse is not necessarily true, even for hierarchical programs. For instance, if II

1S
p < not q,

g+ notr (49)

then the minimal models of ¢II are {¢} and {p, r}; the latter is not an answer set for II.
The completion of a finite normal program II, ¢ compll, is the set of formulas

H= V Bnot
BeBodies(H)

for all atoms H. For example, the completion of (49) is

S QR
e
1
3R

=)
~
Vo)
99

It is clear that all formulas in @Il are propositional consequences of ¢ compll.
The completion of a program is closely related to the two properties of programs
discussed in Sections 3.1 and 3.2—closure and supportedness:

Proposition 3.19. For any finite normal program II, an interpretation I is a model
of Y compll iff I is both closed under Il and supported by II.

Using Proposition 3.5, we conclude that answer sets for a finite tight normal
program can be characterized in terms of propositional logic:

Corollary. For any finite tight normal program II, an interpretation I is an answer
set for I1 iff I satisfies pcompll.

Problem 3.11. Use this corollary to find the answer sets for programs (38), (41) and
(45).

4 Schematic Programs

To turn logic programming into a usable representational and computational tool, we
need to add variables to the language of programs introduced above. In this section, we
define the syntax and semantics of programs with variables, show how they can be used
for representing defaults, and then describe the operation of Prolog in the presence of
variables.

38

4.1 Syntax and Semantics

Consider a first-order language L without equality that has at least one object constant
and at least one predicate constant. Literals of this language will be called schematic
Iiterals. The definitions of a schematic rule element, a schematic rule and a schematic
program are parallel to the definitions of a rule element, a rule and a program given
in Section 3.1, with schematic literals used instead of literals. For instance, (9) is a
schematic program in the language with the object constants Elizabeth,...,Harry, no
function constants, and the binary predicate constant Mother.

For any schematic rule R, Ground(R) stands for the set of all ground instances of
R. For any schematic normal program II,

Ground (II) = U Ground(R).
Rell

It is clear that Ground(R) and Ground(II) are programs in the sense of Section 3.1, if
the set of atoms A is taken to be the set of all ground atoms of L.
Consider, for instance, the language with the object constant 0, the unary function
constant s, and the unary predicate constant p. If II consists of one schematic rule
p(s(z)) < not p(z)
then Ground(II) is program (46), assuming that p, is identified with p(s"(0)).

Problem 4.1. Find a program with the same set of atoms as (46) that cannot be
represented in the form Ground(II) for a finite schematic program II.

An answer set for a schematic program IT is an answer set for Ground(II). Con-
sequences, consistency, well-founded and unfounded literals are defined for schematic
programs in a similar way. Note that the consequences of a schematic program are
ground literals of L.

4.2 Representing Defaults

One important use of negation as failure in schematic programs is for representing
“defaults.” Consider, for instance, the rule

Married(z,y) < Father(z, z), Mother(y, z), (50)

asserting that two persons with a common child are a married couple. One of the
consequences of this rule, in combination with (9) and (10), is

Married(Charles, Diana). (51)

Problem 4.2. Verify this assertion.

In real life, of course, the general assertion expressed by (50) is known to admit
exceptions, so that it would be better to treat (51) as a “default conclusion” in the

39

absence of evidence to the contrary. The weaker assertion that two persons with a
common child are normally married to each other can be expressed by the schematic
rule

Married(z,y) < Father(z, z), Mother(y, z), not Ab(x,y). (52)

Here Ab is an auxiliary “abnormality” predicate. The program consisting of rules (9),
(10) and (52) leads to conclusion (51) also.

Problem 4.3. Verify this assertion.

The difference between “rigid” rule (50) and “default” rule (52) is that, with the
latter used instead of the former, conclusion (51) becomes defeasible. The rule

Ab(Charles, Diana) (563)

expresses that Charles and Diana are a possible exception to the default about couples
with common children. By adding it to the program, we will “nonmonotonically” make
(51) undecidable.

Problem 4.4. Verify that the program consisting of rules (9), (10), (52) and (53),
indeed, has neither (51) nor the negation of (51) among its consequences.

Moreover, if we wish to assert that Charles is not married to Diana, this can be

expressed by
—Married(Charles, Diana). (54)

In combination with (9), (10) and (50), this rule would lead to an inconsistency; the
schematic program with rules (9), (10) and (52)—(54) is consistent.

Problem 4.5. Verify these assertions.

A schematic rule can be used to express that all objects in a certain class are
exceptions to a default. For instance, we can express that adults are normally employed,
but high school dropouts are possible exceptions, by writing

Employed (z) < Adult(z), not Ab(z),
Ab(z) < Dropout(x).

Problem 4.6. Blocks By, ..., Bjp are normally located on the table. However, B is
not on the table, and we are not sure about Bs. Express these assertions as a schematic
program in the language with variables for blocks, the object constants By, ..., B1p and
the unary predicate constants OnTable and Ab. Find the consequences of this program.

Problem 4.7. Birds normally fly. However, penguins do not fly. Opus is a penguin,
and Tweety is not. Express these assertions as a schematic program in the language
with variables for birds, the object constants Opus and Tweety and the unary predicate
constants Flies, Penguin and Ab. Find the consequences of this program.

If several defaults are involved then several abnormality predicates have to be used,
one per default.

40

Problem 4.8. Quakers are normally pacifists, and Republicans are normally not
pacifists. Alice and Bob are Quakers, and Carol is not. Bob and Carol are Republicans,
and Alice is not. Express these assertions as a schematic program in the language with
variables for people, the object constants Alice, Bob and Carol, and the unary predicate
constants Quaker, Republican, Pacifist, Ab; and Aby. Find the consequences of this
program.

4.3 The SLDNF Calculus for Schematic Programs

A schematic goal is a finite set of schematic literals. In the SLDNF calculus for a
schematic program, derivable objects are expressions of the forms = G : § and 5 G,
where G is a schematic goal and § is a substitution® whose support is a subset of
the set of variables occurring in G. If = G : § is derivable then we will say that G
succeeds relative to Il with computed answer substitution (c.a.s.) ¢; if = G is derivable
then we will say that G fails relative to II. The soundness theorem (Corollary 2 to
Proposition 4.1 below) shows that if {L} succeeds with c.a.s. § then every ground
instance of Lé is a consequence of the program; if {L} fails then no ground instance of
L is a consequence.
The following schematic program will be used here for illustration:

p(a,b),
q(b), (55)
r(y) « p(z,y), not q(z).

We will see that, for this program, {r(z)} succeeds with c.a.s. {x/b}. This fact shows
that r(b) is a consequence of the program.

In propositional case (Section 3.6), the SLDNF calculus is based on the idea that
a rule of the program is “applicable” to a literal L when the head of the rule is L.
For schematic programs, the definition of applicability is different. About a schematic
rule we say that it is applicable to a schematic literal L if the head H of the rule has
a common instance with L, that is, if there exist substitutions o1 and oy such that
Hoy = Losy. For example, the last rule of (55) is applicable to r(z).

The “application” of a schematic rule to a schematic literal L is achieved by unifying
L with the head of the rule. Prior to the unification, the variables in the rule are
renamed so that they do not appear in the goal under consideration. For instance,
before the last rule of (55) is applied to r(x), it can be replaced by

r(y) < p(z1,y), not q(xy). (56)

We assume that a specific variable renaming procedure vr is chosen: For every
schematic rule R and every finite set V of variables, an invertible? substitution

For the definitions related to the notion of a substitution, the reader is referred to the textbook by
Fitting [1990], Sections 5.2 and 7.2.

4 A substitution @ is invertible if there is a substitution 6 ! such that both #0~! and #~16 equal the
identity substitution e.

41

vr(R,V) is selected such that the rule R - vr(R,V) does not contain variables from
V. For instance, if R is the last rule of (55) then one possible choice for vr(R,{z}) is
{z/z1,x1/x}; the result of applying this substitution to R is (56).

By mgu(L1, Ls) we denote a most general unifier of schematic literals Ly and L. For
any goal G, vars(G) stands for the set of variables occurring in G. For any substitution
d and any set V of variables, § | V stands for the restriction of § to V:

xd, ifzeV,

x, otherwise.

261 V) = {
The SLDNF calculus for a schematic program II consists of the axiom
=0:e
and the following inference rules:

E(GUBf)o : 6
EGU{L} : 06| vars(GU{L})

(SP)

if H < B is a rule of IT applicable to L,
where 0 = vr(H + B,vars(GU{L})) and o = mgu(L, Hf)

= (G U Bf)o for all rules H < B of I applicable to L
JGU{L}

where 0 = vr(H + B,vars(GU{L})) and o = mgu(L, Hf)

(FP)

(SN) |)::%Qfmt L? {L(S} if I is ground

(FN) % if L is ground

The following comments on the inference rule (SP) may be helpful.
1. The variable renaming 0 is selected in such a way that the schematic rule obtained
from H < B by the renaming, that is,

Hf « B9, (57)

does not have common variables with the goal G U {L}.

2. The substitution o unifies L with the head H6 of (57). These two literals are
indeed unifiable because they have a common instance (H < B is applicable to L, and
6 is invertible) and have no common variables.

3. The premise of (SP) can be thought of as a symbolic representation of the set

of ground instances of
(G U B6)od;

42

this goal can be written as
God U Bboé.

Similarly, the conclusion of (SP) represents the set of ground instances of
(GU{L})od;
by the choice of o, this goal can be written as
God U{Hbod}.

We see that the bottom-up application of (SP) amounts to replacing the head of the
instance

HO06 + BOoé

of (57) with its body.

4. In the conclusion of (SP), the substitution od is restricted to the variables
occurring in the goal G U {L}. Without this, the conclusion might be not in the class
of derivable expressions of this calculus.

Note that in (SN) and (FN) the literal L is required to be ground. It is clear that
any goal of the form {not L}, where L is nonground, neither succeeds nor fails.

Here is a derivation in the SLDNF calculus for (55):

(FP)
F0 e = {a(a)}
(SN)
= {not q(a)} : e
(SP)
|: {p(xl,x),not q(xl)} : {x/bawl/a}
(SP)

= {r()} : {=/b}
In the first application of (SP),
H :p(aa b)a B = (Z)a G = {nOt Q(xl)}a L :p(l'l,l'),

0= € 0= mgu(p(xl,x),p(a,b)) = {x/bawl/a}’ d= €,
00 | vars(GU{L}) = {z/b,z1/a} | {z,z1} = {x/b,x1/a}.

In the second application,

H =r(y), B={p(z,y),not q(z)}, G=0,L =r(z),
6= {x/xlaxl/x}v o = mgu(r(z),r(y)) = {y/x}v 6= {x/bv xl/a}a
00 | vars(GU{L}) = {z/b,y/b,x1/a} | {x} = {x/b}.

Problem 4.9. For the schematic program whose only rule is p(z,), find a substitution
d such that {p(z,y)} succeeds with c.a.s. é.

The following theorem relates the SLDNF calculus for a schematic program II to
the SLDNF calculus for Ground(II).

43

Proposition 4.1. For any schematic program II, schematic goal G and substitution d,

e if G succeeds relative to I1 with c.a.s. § then every ground instance of G succeeds
relative to Ground(II),

e if G fails relative to Il then every ground instance of G fails relative to Ground (II).

For instance, the derivation above shows that {r(z)} succeeds relative to program
(55) with c.a.s. {z/b}; consequently, {r(b)} succeeds relative to the corresponding
ground program.

Problem 4.10. Find a derivation of = {r(b)} in the SLDNF calculus for this ground
program.

Using Propositions 3.13 and 3.14, we conclude:

Corollary 1. For any schematic program II and schematic goal G, if G succeeds
relative to I with some c.a.s. then G does not fail relative to 1I.

Corollary 2. For any schematic program II, schematic literal L, and substitution 4,

e if {L} succeeds relative to Il with c.a.s. § then every ground instance of LJ is a
well-founded consequence of 11,

e if II is consistent and {L} fails relative to II then every ground instance of L is
unfounded relative to II.

The last corollary expresses the soundness of the SLDNF calculus for consistent
schematic programs.

4.4 Prolog

Proposition 3.16 and the thinning rule (Section 3.6) are extended to schematic programs
in a straightforward way.

The process of computing answer substitutions in Prolog can be described as follows.
Prolog attempts to “evaluate” a schematic goal G, that is, to generate a series of
computed answer substitutions for G or to establish that G fails. This is done by
backward chaining, and Prolog performs the evaluation correctly as long as it does not
“flounder” (see below).’

If the given schematic goal G is empty then it succeeds with the c.a.s. €, and the
process terminates. Otherwise, the first step is to select a singleton subgoal in G. If
the selected subgoal does not contain negation as failure, so that G is represented as
G' U{L}, then Prolog takes, one by one, the schematic rules H < B applicable to L,
computes for each of them 6 = vr(H « B,vars(G' U{L})) and o = mgu(L, Hf), and
starts evaluating (G’ U Bf)o. Whenever an expression of the form = (G' U Bf)o : 4§ is

®Floundering is one of two reasons why a Prolog system can evaluate a schematic goal incorrectly.
The second reason is that, for the sake of efficiency, most Prolog implementations omit the occurs check
from the unification algorithm.

44

derived, a new c.a.s. for G is produced by one application of (SP). If 5 (G'UB6)o has
been derived for each schematic rule applicable to L then the failure of G is concluded
by one application of (F'P).

If the selected subgoal contains negation as failure, so that G is represented as
G' U{not L}, then what happens next depends on whether or not L is ground. If it is
then Prolog starts evaluating the goal {L}. If it succeeds then, since L is ground, the
only possible c.a.s. for this goal is €, and = G can be derived by (FN). If it fails then
Prolog starts evaluating G'. Whenever an expression of the form = G’ : § is derived,
a new c.a.s. for G is produced by one application of (SN). If 5 G’ is derived then the
failure of G is concluded by one application of (7'). Finally, if L is nonground then
Prolog “flounders.” It is not capable of continuing the evaluation process correctly.

As an example, consider the Prolog evaluation of the goal {r(z)} for program (55).
The process begins with the partial derivation

L A{r(z)} : 01

where the symbol §; represents an unknown answer substitution; it will be computed
later if I turns out to represent success. On the first step, L = r(z) and G' = (). The
only rule of (55) applicable to L is the last one:

H=r(y), B= {p(x,y), not Q(x)}

We compute

6= {x/xlaxl/x}a o= {y/x},
(G'U BO)o = {p(z1,z), not q(z1)},

and arrive at the partial derivation

1L {p(21,2), not q(a1)} : &

A {r(x)}: o1
with the following equation relating the unknown substitutions é; and Js:

01 = {y/=}d2 | {x}. (58)

Now L = p(z1,z) and G' = {not q(z1)}. The only rule of (55) applicable to L is the
first one:
H = p(a,b), B=0.

We compute
0= € 0 = {ZL‘/b, ZL']_/G},
(G'"U Bf)o = {not q(a)},

and arrive at the partial derivation

1L {not q(a)} : 03

1L {p(z1,2), not q(a1)} : &

U Ar(z)} : &

45

with the additional equation
02 = {z/b,x1/a}ds | {z,x1}.
After that, we generate the figure
1L {q(a)} : e

AL {not q(a)} : J3

1L {p(a1,3), not q(a1)} : &

L A{r(z)} : 01
Since no rule in (55) is applicable to g(a), the goal {q(a)} fails:

(FP)
= {4(a)}

AL {not q(a)} : J3

1L {p(a1,3), not q(a1)} : &

L A{r(z)} : 01
The next step takes us to the figure

(FPy
L0 - = {4(a)}

1L {not q(a)} : 03

1L {p(z1,2), not q(a1)} : &

U Ar(z)} : &
with the equation
03 = d4.
Finally we observe that () succeeds with c.a.s. € and arrive at the derivation
(PPy
0 :d = {q(a)}
(SN)
= {not g(a)} : &
(SP)
|: {p(CL']_,ZU),’IlOt Q(ivl)} : 52
(SP)

= {r(@)} : &

46

and the equation
04 — €.

The values of d1,...,04 can be determined from the equations given above. Having
done this, we will see that this is the same derivation as the one given in Section 4.3.
In this example, Prolog has computed only one answer substitution for the given
goal. To see how it can produce several answer substitutions, consider the following
enhancement of (55):
(a,b),
p(z,c) < p(z,b),
q(b),
r(y) < p(z,y), not q(x).
The process will proceed as described above, but it will not stop here, because the new
program has a second rule applicable to p(z1,z). We go back to the step after equation
(58) and compute:
L =p(z1,2), G' = {not q(z1)},
H :p(:v,c), B = {p(f,b)},
0 = {z/x2,22/x}, 0 = {x/c,x2/21},
(G"U BO)o = {p(z1,b), not q(z1)}.

This leads to the partial derivation

AL {p(z1,b), not q(z1)} : 0%

1L {p(a1,3), not q(a1)} : &

L A{r(z)} : 01
with the additional equation
62 = {z/c, xa/x1}0% | {z, 21}
This is a path to a new chain of partial derivations and to a second computed answer
substitution.
Problem 4.11. Find these partial derivations and the substitution.

Problem 4.12. Describe the work of Prolog on the program obtained from (55) by
dropping the second rule, and the same goal as above.

5 Disjunctive Programs and Default Theories

In this section, the class of programs with negation as failure is extended in two different
directions. In a “disjunctive program,” the head of a rule, like the body, is allowed
to be a finite set of rule elements, rather than a single literal. In a “default theory,”
arbitrary propositional formulas can be used in place of literals.

47

5.1 Disjunctive Programs

A disjunctive rule is an ordered pair Head < Body, where Head and Body are finite
sets of rule elements. A rule L < Body in the sense of Section 3.1 will be identified
with the disjunctive rule {L} < Body. A disjunctive rule can be represented in the
form

HPos U not(HNeg) < BPos U not(BNeg) (59)

for some finite sets of literals HPos, HNeg, BPos, BNeg. The rule with the head
{L1,...,Lg,not Lg1,...,not L;} and the body {L;11,..., Ly, not Lyi1,...,not Ly}
will be also written as

Li|---|Lg | not Lgy1 |-+ | not Ly < Lyj1,..., Ly, not Liyi1,...,n0t L, (60)

(] reads “or”).
A disjunctive program is a set of disjunctive rules. For instance, here is a disjunctive
program without negation as failure:

1 p.

In the next example, the head of one of the disjunctive rules is empty; such rules are

called constraints:
p < not q,

q < not p, (62)

A disjunctive rule may contain the negation as failure symbol in the head, as, for
instance, the second rule of the program

q < p,
p| not p <. (63)

The notion of an answer set is defined for disjunctive programs in two steps. First
we give the definition for disjunctive programs without negation as failure, such as (61).
Then it is extended to the general case by means of a process similar to the one used
in Section 3.1.

Let II be a disjunctive program without negation as failure. About a set X of
literals we say that it is closed under II if, for every disjunctive rule Head < Body in
I, Head N X # () whenever Body C X. We say that X is an answer set for IT if it
is a minimal (relative to set inclusion) set of literals that is both closed under IT and
logically closed.

For instance, the answer sets for program (61) are {p, —r} and {q}.

The reduct of a disjunctive program II relative to a set of literals X is the disjunctive
program without negation as failure obtained from II by

e deleting each disjunctive rule (59) such that HNeg ¢ X or BNeg N X #), and

48

e replacing each remaining disjunctive rule (59) by HPos < BPos.

This disjunctive program will be denoted by IIX. We say that X is an answer set for
IT if X is an answer set for IIX. A consequence of a disjunctive program is a literal
that belongs to all its answer sets.

When applied to a program in the sense of Section 3.1, these definitions are clearly
equivalent to the ones given there.

Problem 5.1. Find the answer sets for the disjunctive program

plag<,
—p < not p,
—q < not q,
r 4 D,
rq.

It is easy to check that {q} is the only answer set for program (62). The effect of
adding the constraint < p to the first two rules of (62) is to eliminate the answer set
that includes p. This is an instance of the general fact stated below as Proposition 5.1.

About a set X of literals we say that it violates a constraint

< Pos U not(Neg)

if Pos C X and X N Neg = (). Otherwise, X satisfies the constraint.

Proposition 5.1. Let Il be a disjunctive program, and C' a set of constraints. A set of
Iiterals is an answer set for I1UC' iff it is an answer set for Il and satisfies all constraints
in C.

Program (63) has two answer sets: () and {p,q}. This example shows that the
assertion of Proposition 3.1 does not generally hold for disjunctive programs with the
negation as failure symbol in the head.

5.2 Default Logic
A default is an expression of the form

F notGy --- notG,
H

(64)

where F,G1,...,Gy, H are propositional formulas, n > 0. We will drop F' if it equals
true. A default of the form

H

will be identified with the formula H.
A default theory is a set of defaults. For instance, here is a default theory:

not p
{qu, - } (65)

49

A rule

Ly« Lyq,...,Ly,not Lm+1,...,’/l,0t L,
will be identified with the default
LiN-- ALy mnot Lypy1 -+ not Ly
Ly '

According to this convention, programs in the sense of Section 3 are default theories of
a special syntactic form.

Our syntax of defaults stresses their similarity to rules in logic programming and
is somewhat different from the standard one. Traditionally, defaults are defined as
expressions of the form

F: MG --- MG,
q)
where M expresses “consistency,” or simply
F: G - G
i .
In our notation, this expression corresponds to
F not -Gi --- mnot -G,
i .

Let T be a default theory. The function I'r from sets of formulas to sets of formulas
is defined as follows: For any set of formulas X, I'r X is the smallest set of formulas Y
such that

e for every default (64) in T, if F € Y and Gy,...,G, € X then H €Y,

e Y is logically closed (in the sense of propositional logic).

A set of X of formulas is an extension for T if '+ X = X. A consequence of a default
theory is a formula that belongs to all its extensions.
If, for example, T is (65) then, for any set of formulas X,

Closure({p V q}), ifpe X,

rX = { Closure({p V ¢, —p}), otherwise,

where Closure denotes the deductive closure in the sense of propositional logic. It is
clear that the only extension for (65) is Closure({p V ¢, —p}), that is, Closure({-p,q}).
The consequences of this theory are the consequences of —p and ¢ in the sense of
propositional logic.
Problem 5.2. Find the extensions for the default theory
not p not q
(pvq i mia)
-p -q

Default logic is an extension of propositional logic: If T' is a set of formulas then

the only extension for T' is Closure(T'). If, on the other hand, T is a program then

there is a simple one-to-one correspondence between its answer sets and its extensions
in the sense of default logic:

50

Proposition 5.2. For any program II,
e if X is an answer set for Il then Closure(X) is an extension for II,

e every extension for II has the form Closure(X) for exactly one answer set X
for II.

6 Bibliographical and Historical Remarks

The use of logic-based languages for representing declarative knowledge was proposed
by McCarthy [1959] a few years before the creation of first relational databases.
Connecting the two approaches using the domain closure assumption and the unique
name assumption is the idea of Reiter [1984].

Credit for founding the field of logic programming is usually given to Kowalski and
Colmerauer, whose early work on this subject was done in the mid-seventies. Kowalski,
in the words of Minker [1988], “was the visionary who kept doggedly speaking about
logic programming until the field became recognized as important.” The first Prolog
interpreter was designed by Colmerauer in 1973; in 1977, David L. D. Warren developed
a more efficient implementation of Prolog and made it available to others. The second
query evaluation method mentioned here, SLG, was designed and implemented by Chen
and David S. Warren [Chen et al., 1995].

The idea of negation as failure was introduced by Clark [1978], and the closed
world assumption by Reiter [1978]. Classical negation was incorporated into the
syntax of logic programming rules by Gelfond and Lifschitz [1990]; a similar idea was
independently developed by Pearce and Wagner [1990].

Head-consistency was introduced in [Turner, 1994]. The properties of T; and ¢ are
due to van Emden and Kowalski [1976].

Definitions equivalent to the definition of an answer set for normal programs were
proposed independently by Bidoit and Froidevaux [1987] and Gelfond [1987]. The
definition used in this survey was given by Gelfond and Lifschitz, first for normal
programs [1988] (where answer sets were called “stable models”) and then for programs
with both kinds of negation [1990].

Clark [1978] defined completion—not only for propositional programs, as in this
survey, but also for programs with variables—and proposed to view any (normal)
program as shorthand for the corresponding first-order theory, the “completed
database.” Historically, this was the first declarative semantics for programs with
negation as failure. Supported sets were defined in [Apt et al., 1988]. Well-founded
and unfounded literals were introduced (for normal programs) in [Van Gelder et al.,
1990] and [Przymusinski, 1991]. This concept is often used as a semantical foundation
for logic programming. According to the “well-founded semantics,” only well-founded
literals are counted as consequences of the program. This approach and its extensions
are applied to knowledge representation in [Pereira et al., 1993].

The discussion of splitting in Sections 2.4 and 3.4 is based on [Lifschitz and Turner,
1994]. The elimination step performed as part of splitting is an example of “partial

51

deduction” [Komorowski, 1990].

Hierarchical programs were defined in [Cavedon, 1989], on the basis of a special case
defined in [Clark, 1978]. Another special case of hierarchical programs was studied and
applied to reasoning about action in [Apt and Bezem, 1990]. Tight programs were
introduced by Fages [1994], under the name “positive-order-consistent.” The notion
of a stratified program was developed in a series of papers by Chandra and Harel
[1985], Apt, Blair and Walker [1988], Van Gelder [1988] and Przymusinski [1988]. Strict
programs were defined in [Apt et al., 1988], and order-consistent programs in [Sato,
1990]. Propositions 3.5 and 3.12 are from [Fages, 1994]. The idea of tightening and
Proposition 3.6 belong to Wallace [1993].

The reduction of arbitrary programs to normal programs was proposed in [Gelfond
and Lifschitz, 1990]. The counterexample following Corollary to Proposition 3.17 is
due to Hudson Turner (personal communication) who uncovered an error in the printed
version of this survey. Proposition 3.18 is from [Gelfond and Lifschitz, 1988].

The abnormality predicate was first used by McCarthy [1986] in the context of his
theory of circumscription.

Our treatment of Prolog is based on the ideas of [Mints, 1986] (translated into
English as [Mints, 1990]) and [Kunen, 1989]. SLDNF calculi are further generalized in
[Lifschitz, 1995] and [Lifschitz et al., 1995].

The notion of an answer set for disjunctive programs without negation as failure
in the heads of rules was defined in [Gelfond and Lifschitz, 1991]. This last limitation
was removed by Lifschitz and Woo [1992]. Inoue and Sakama [1994] related negation
as failure in heads to the important area of “abductive logic programming” [Kakas et
al., 1992].

Default logic was invented by Reiter [1980]. His definition of an extension was,
historically, a source of the idea of an answer set; the work by Bidoit and Froidevaux
mentioned above was based on the reduction of logic programs to default theories. In a
similar way, Gelfond’s paper related logic programs to another nonmonotonic formalism
whose semantics is defined by a fixpoint construction—to the system of autoepistemic
logic introduced by Moore [1985].

The monographs [Lloyd, 1987] and [Lobo et al., 1992] use the approaches to the
semantics of logic programming different from ours. A survey of early work on negation
as failure can be found in [Shepherdson, 1988].

The 1994 special issue of the Journal of Logic Programming and its continuation,
celebrating the tenth anniversary of the journal, contain, among others, three surveys
closely related to this one—by Apt and Bol [1994], by Baral and Gelfond [1994], and
by Ramakrishnan and Ullman [1995]. They provide somewhat different perspectives
and contain extensive bibliographies.

Acknowledgements

Drafts of this survey were used in the courses taught at the University of Texas and
at the Fifth European Summer School in Language, Logic and Information, and I am

52

grateful to my students for their criticisms and suggestions. I would also like to thank
Michael Gelfond, Norman McCain and Hudson Turner for their useful comments. This
work was partially supported by National Science Foundation under grant IRI-9306751.

Appendix. Monotone Functions

Consider an arbitrary set 2 and a function T from subsets of {2 to subsets of Q. A
subset X of is a pre-fixpoint of T if TX C X; X is a post-fixpoint of T if X C TX.
Thus X is a fixpoint of T (T X = X) iff it is both a pre-fixpoint and post-fixpoint of T'.

We say that T is monotone if, for any subsets X,Y of Q, TX C TY whenever
X C Y. The following fact is known as the Knaster-Tarski theorem [Tarski, 1955):

Proposition A.1. Every monotone function has
e a least fixpoint, that is also its least pre-fixpoint, and
e a greatest fixpoint, that is also its greatest post-fixpoint.

These fixpoints can be approached (but not necessarily reached) by iterating 7T":

Proposition A.2. For every monotone function T,

o the sequence (T™0),>¢ Is increasing (that is, every element of this sequence is a
subset of the next one), and its union a subset of the least fixpoint of T,

e the sequence (T"2),>¢ is decreasing (that is, every element of this sequence is a
superset of the next one), and its intersection is a superset of the greatest fixpoint
of T.

Problem A.l1. Let © be the set of natural numbers. (a) Give an example of a
monotone function 7" such that all sets 70 (n > 0) are different from each other, and
the union of these sets is a fixpoint of T". (b) Give an example of a monotone function
T such that all sets 7" (n > 0) are different from each other, and the intersection of
these sets is a fixpoint of T'.

Problem A.2. Let Q be the set of natural numbers. (a) Give an example of a
monotone function T such that the union of the sets 7"((n > 0) is not a fixpoint of
T. (b) Give an example of a monotone function 7" such that the intersection of the sets
T™Q (n > 0) is not a fixpoint of T'.

If Q is finite then the least and the greatest fixpoints of a monotone function 7" can
be computed by iterating T a finite number of times: For all sufficiently large n, T"0
equals the least fixpoint of T', and T"(2 equals the greatest fixpoint of T'.

A function T from subsets of 2 to subsets of 2 is anti-monotone if, for any subsets
X, Y of Q, TY C TX whenever X C Y. It is clear that, for any anti-monotone function
T, T? is monotone.

53

Proposition A.3. Let T be an anti-monotone function, and let Xy, and X; be the
least and the greatest fixpoints of T?. Then

d TXO = Xl; TXI = XU;
e for any fixpoint X of T, Xy C X C X;.

Corollary. For any anti-monotone function T, if X is the only fixpoint of T? then X
is the only fixpoint of T'.

If Q is finite then, for any anti-monotone function T, the least and the greatest
fixpoints of T2 can be computed by iterating T' a finite number of times, as follows.
Compute the sets 70 (n = 0,1, ...) until a value of n is found for which 770 = T"+2(.
Then one of the sets T™0, T"t1(is the least fixpoint of T'?, and the other is the greatest
fixpoint of T2, depending on whether n is even or odd. Alternatively, these fixpoints
can be found by iterating 7" on (2.

References

[Apt and Bezem, 1990] Krzysztof Apt and Marc Bezem. Acyclic programs. In David
Warren and Peter Szeredi, editors, Logic Programming: Proc. Seventh Int’l Conf.,
pages 617-633, 1990.

[Apt and Bol, 1994] Krzysztof Apt and Ronald Bol. Logic programming and negation:
a survey. Journal of Logic Programming, 19,20:9-71, 1994.

[Apt et al., 1988] Krzysztof Apt, Howard Blair, and Adrian Walker. Towards a theory
of declarative knowledge. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89-148. Morgan Kaufmann, San Mateo, CA, 1988.

[Baral and Gelfond, 1994] Chitta Baral and Michael Gelfond. Logic programming and
knowledge representation. Journal of Logic Programming, 19,20:73-148, 1994.

[Bidoit and Froidevaux, 1987] Nicole Bidoit and Christine Froidevaux. Minimalism
subsumes default logic and circumscription. In Proc. LICS-87, pages 89-97, 1987.

[Cavedon, 1989] Lawrence Cavedon. Continuity, consistency and completeness prop-
erties for logic programs. In Giorgio Levi and Maurizio Martelli, editors, Logic
Programming: Proc. Sixzth Int’l Conf., pages 89-97, 1989.

[Chandra and Harel, 1985] Ashok Chandra and David Harel. Horn clause queries and
generalizations. Journal of Logic Programming, 2(1):1-5, 1985.

[Chen et al., 1995] Weidong Chen, Terrance Swift, and David Warren. Efficient top-
down computation of queries under the well-founded semantics. Journal of Logic
Programming, 24:161-199, 1995.

54

[Clark, 1978] Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 293-322. Plenum Press, New York, 1978.

[Emden and Kowalski, 1976] Maarten van Emden and Robert Kowalski. The semantics
of predicate logic as a programming language. Journal of the ACM, 23(4):733-742,
1976.

[Fages, 1994] Francois Fages. Consistency of Clark’s completion and existence of stable
models. Journal of Methods of Logic in Computer Science, 1:51-60, 1994.

[Fitting, 1990] Melvin Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, 1990.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert Kowalski and Kenneth Bowen,
editors, Logic Programming: Proc. Fifth Int’l Conf. and Symp., pages 1070-1080,
1988.

[Gelfond and Lifschitz, 1990] Michael Gelfond and Vladimir Lifschitz. Logic programs
with classical negation. In David Warren and Peter Szeredi, editors, Logic
Programming: Proc. Seventh Int’l Conf., pages 579-597, 1990.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical nega-
tion in logic programs and disjunctive databases. New Generation Computing, 9:365—
385, 1991.

[Gelfond, 1987] Michael Gelfond. On stratified autoepistemic theories. In Proc. AAAI-
87, pages 207-211, 1987.

[Inoue and Sakama, 1994] Katsumi Inoue and Chiaki Sakama. On positive occurrences
of negation as failure. In Proc. Fourth Int’l Conf. on Principles of Knowledge
Representation and Reasoning, pages 293-304, 1994.

[Kakas et al., 1992] Antonis Kakas, Robert Kowalski, and F. Toni. Abductive logic
programming. Journal of Logic and Computation, 2(6):719-770, 1992.

[Komorowski, 1990] Jan Komorowski. Towards a programming methodology founded
on partial deduction. In Proc. ECAI-90, 1990.

[Kunen, 1989] Kenneth Kunen. Signed data dependencies in logic programs. Journal
of Logic Programming, 7(3):231-245, 1989.

[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson Turner. Splitting a logic
program. In Pascal Van Hentenryck, editor, Proc. Eleventh Int’l Conf. on Logic
Programming, pages 23-37, 1994.

[Lifschitz and Woo, 1992] Vladimir Lifschitz and Thomas Woo. Answer sets in general
nonmonotonic reasoning (preliminary report). In Bernhard Nebel, Charles Rich,

95

and William Swartout, editors, Proc. Third Int’l Conf. on Principles of Knowledge
Representation and Reasoning, pages 603—614, 1992.

[Lifschitz et al., 1995] Vladimir Lifschitz, Norman McCain, Teodor Przymusinski, and
Robert Stark. Loop checking and the well-founded semantics. In Logic Programming

and Non-monotonic Reasoning: Proceedings of the Third International Conference,
pages 127-142, 1995.

[Lifschitz, 1995] Vladimir Lifschitz. SLDNF, constructive negation and grounding. In
Proc. ICLP-95, pages 581-595, 1995.

[Lloyd, 1987] John Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
Second, extended edition.

[Lobo et al., 1992] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of
Disjunctive Logic Programming. MIT Press, 1992.

[McCarthy, 1959] John McCarthy. Programs with common sense. In Proc. Teddington
Conference on the Mechanization of Thought Processes, pages 75-91, London, 1959.
Her Majesty’s Stationery Office. Reproduced in [McCarthy, 1990].

[McCarthy, 1986] John McCarthy. Applications of circumscription to formalizing
common sense knowledge. Artificial Intelligence, 26(3):89-116, 1986. Reproduced in
[McCarthy, 1990].

[McCarthy, 1990] John McCarthy. Formalizing Common Sense: Papers by John
McCarthy. Ablex, Norwood, NJ, 1990.

[Minker, 1988] Jack Minker. Perspectives in deductive databases. Journal of Logic
Programming, 5:33-60, 1988.

[Mints, 1986] Grigori Mints. A complete calculus for pure Prolog. Proc. Academy of
Sciences of Estonian SSR, 35(4):367-380, 1986. In Russian.

[Mints, 1990] Grigori Mints. Several formal systems of logic programming. Computers
and Artificial Intelligence, 9(1):19-41, 1990.

[Moore, 1985] Robert Moore. Semantical considerations on nonmonotonic logic.
Artificial Intelligence, 25(1):75-94, 1985.

[Pearce and Wagner, 1990] David Pearce and Gerd Wagner. Reasoning with negative
information I: Strong negation in logic programs. Acta Philosophica Fennica, 49,
1990.

[Pereira et al., 1993] Luis Pereira, Joaquim Aparicio, and Jose Alferes. Nonmonotonic
reasoning with logic programming. Journal of Logic Programming, 17:227-263, 1993.

56

[Przymusinski, 1988] Teodor Przymusinski. On the declarative semantics of deductive
databases and logic programs. In Jack Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 193-216. Morgan Kaufmann, San Mateo,
CA, 1988.

[Przymusinski, 1991] Teodor Przymusinski. Stable semantics for disjunctive programs.
New Generation Computing, 9:401-424, 1991.

[Ramakrishnan and Ullman, 1995] Raghu Ramakrishnan and Jeffrey Ullman. A survey
of deductive database systems. Journal of Logic Programming, 23:125-150, 1995.

[Reiter, 1978] Raymond Reiter. On closed world data bases. In Herve Gallaire and
Jack Minker, editors, Logic and Data Bases, pages 119-140. Plenum Press, New
York, 1978.

[Reiter, 1980] Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13:81-132, 1980.

[Reiter, 1984] Raymond Reiter. Towards a logical reconstruction of relational database
theory. In M.L. Brodie, J. Mylopoulos, and J.W. Schmidt, editors, On Conceptual
Modelling: Perspectives from Artificial Intelligence, Databases and Programming
Languages, pages 191-233. Springer-Verlag, 1984.

[Sato, 1990] Taisuke Sato. Completed logic programs and their consistency. Journal
of Logic Programming, 9:33-44, 1990.

[Shepherdson, 1988] John Shepherdson. Negation in logic programming. In Jack
Minker, editor, Foundations of Deductive Databases and Logic Programming, pages
19-88. Morgan Kaufmann, San Mateo, CA, 1988.

[Tarski, 1955] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285-309, 1955.

[Turner, 1994] Hudson Turner. Signed logic programs. In Proc. ILPS-94, pages 61-75,
1994.

[Van Gelder et al., 1990] Allen Van Gelder, Kenneth Ross, and John Schlipf. The well-
founded semantics for general logic programs. Journal of ACM, pages 620-650, 1990.

[Van Gelder, 1988] Allen Van Gelder. Negation as failure using tight derivations for
general logic programs. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 149-176. Morgan Kaufmann, San Mateo, CA, 1988.

[Wallace, 1993] Mark Wallace. Tight, consistent and computable completions for
unrestricted logic programs. Journal of Logic Programming, 15:243-273, 1993.

57

