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Abstract

This is a survey of the theory of logic programs with classical negation and

negation as failure� The semantics of this class of programs is based on the notion

of an answer set� The operation of Prolog is described in terms of proof search in

the SLDNF calculus�

� Introduction

In this survey� we view logic programming as a method for representing declarative
knowledge� To put the subject in a proper perspective� we brie�y discuss here two other
approaches to knowledge representation and compare them with logic programming�

��� Relational Databases and First�Order Theories

We would like to represent facts about the parenthood relations among several members
of Britain�s royal family� the Queen� the Prince and Princess of Wales� and their
children� These facts can be represented as a relational database� as follows�

Relation Mother

PARENT CHILD

Elizabeth Charles

Diana William

Diana Harry

Relation Father

PARENT CHILD

Charles William

Charles Harry

We will call this database DB��
Alternatively� these facts can be encoded as a �rst�order theory� The names of

the �ve individuals involved are the object constants of this theory T�� Mother and

	



Father are its binary predicate constants� The �rst group of axioms of T� tells us that
the domain of reasoning consists of the �ve distinct objects represented by the object
constants�

�x
x � Elizabeth � x � Charles � x � Diana � x �William � x � Harry�� 
	�

Elizabeth �� Charles � Elizabeth �� Diana � � � � � William �� Harry � 

�

Axiom 
	� is said to express the �domain closure assumption�� and axioms 

�
express the �unique name assumption�� The second group of axioms characterizes
the predicates Mother and Father �

�xy�Mother
x� y� � 
x � Elizabeth � y � Charles�
�
x � Diana � y �William�
�
x � Diana � y � Harry���

�xy�Father 
x� y� � 
x � Charles � y �William�
�
x � Charles � y � Harry���


��

Problem ���� Prove that T� is consistent�

Problem ���� Prove that T� is complete�

There is a simple connection between the relational database DB� and the �rst�order
theory T�� Let us agree to identify DB� with the set of atomic sentences corresponding
to the lines of its tables�

Mother 
Elizabeth �Charles��
Mother 
Diana �William��
Mother 
Diana �Harry��
Father 
Charles �William��
Father 
Charles �Harry��


��

Then any atomic sentence in the language of T� other than an equality is provable in
T� if it belongs to DB�� and refutable otherwise�

Problem ���� Prove this assertion� Would it be true without axioms 
	� in the axiom
set of T�� Without axioms 

��

Theory T� can be further extended by axioms de�ning some new predicates in terms
of Mother and Father � for instance�

�xy
Parent
x� y� � Mother 
x� y� � Father 
x� y��� 
��

�x
Childless
x� � ��yParent
x� y��� 
��

�xy
Grandparent 
x� y� � �z
Parent
x� z� � Parent
z� y���� 
��

We can also add the predicate Male and the axioms

�xy
Father 
x� y� �Male
x���
�xy
Mother 
x� y� � �Male
x���


��






Note that the axioms for Male are di�erent from the others in that they do not provide
an explicit de�nition of the new predicate� they only give a su�cient condition and a
necessary condition� Accordingly� the �rst�order theory obtained at this stage is not
complete�

Problem ���� Show that the sentences Male
William� and Male
Harry� are neither
provable nor refutable from the axioms introduced above�

��� Logic Programs

Now we will turn to our main subject�representing declarative knowledge by logic
programs� A logic program consists of rules� A rule has two parts� the head and the
body� If the body is nonempty� then we separate it from the head by the symbol 	

�if���

Head 	 Body �

The precise syntax of the head and the body and the semantics of programs will be
de�ned later� Here we only give a few examples�

The de�nition of Mother � in the notation of logic programming� consists of the
following rules�

Mother
Elizabeth �Charles��
Mother
Diana �William��
Mother
Diana �Harry��
�Mother
x� y�	 not Mother 
x� y��


��

Each of the �rst three rules has a particularly simple structure� Its body is empty�
and its head is an atomic sentence� The head of the last rule is a negated atom� and
its body is an expression containing the symbol not � called �negation as failure�� The
rule tells us that� for any individuals x and y under consideration� we can conclude
�Mother 
x� y� if the program gives no evidence that Mother 
x� y�� This rule expresses
the �closed world assumption� for the predicate Mother � The availability of this rule
allows us� for instance� to conclude �Mother
Elizabeth �Elizabeth��

The negation as failure symbol makes logic programs �nonmonotonic�� Classical
logic is monotonic in the sense that adding an axiom to a �rst�order theory may only
allow us to derive new theorems� no theorems proved earlier will be lost� Logic programs
with negation as failure are di�erent� Adding a rule to a logic program may force us to
retract some of the conclusions obtained using the more limited set of rules� Consider�
for instance� program 
�� without the rule Mother 
Diana�Harry�� Due to the closed
world assumption� this smaller program allows us to conclude �Mother 
Diana�Harry��
If we now put the rule Mother 
Diana �Harry� back in� this conclusion will have to be
retracted� The same phenomenon is observed in relational databases� Adding a line to
a database table invalidates a negative conclusion that could be obtained earlier�

The de�nition of Father is similar to 
���

Father 
Charles �William��
Father 
Charles �Harry��
�Father 
x� y�	 not Father 
x� y��


	��

�



Here are the logic programming counterparts of de�nitions 
���
���

Parent
x� y�	 Mother
x� y��
Parent
x� y�	 Father 
x� y��
�Parent
x� y�	 not Parent
x� y��


		�

�Childless
x�	 Parent
x� y��
Childless
x�	 not �Childless
x��


	
�

Grandparent 
x� y�	 Parent
x� z��Parent 
z� y��
�Grandparent 
x� y�	 not Grandparent 
x� y��


	��

The de�nition of Childless is di�erent from the others in that it includes the closed
world assumption for the negation of the de�ned predicate� If the program gives no
evidence that �Childless
x� then we can conclude Childless
x��

The counterpart of 
�� in logic programming is

Male
x�	 Father 
x� y��
�Male
x�	 Mother 
x� y��


	��

Note that there is no closed world assumption here�
Here is one more example of a logic programming de�nition�

Ancestor
x� y�	 Parent
x� y��
Ancestor
x� y�	 Ancestor
x� z��Ancestor 
z� y��
�Ancestor
x� y�	 not Ancestor
x� y��


	��

Ancestor occurs both in the head and in the body of the second rule� so that this
de�nition is �recursive�� It has no counterpart in �rst�order logic� The axiom

�xy�Ancestor
x� y� � 
Parent
x� y� � �z
Ancestor 
x� z� �Ancestor
z� y���� 
	��

may seem promising as a translation of 
	�� into �rst�order logic� but it would not
allow us to prove

�Ancestor
Elizabeth �Elizabeth� 
	��

or any other �negative� fact about Ancestor �

Problem ���� Verify that 
	�� is not derivable from axioms 
	��
��� 
�� and 
	���

��� Logic Programming Systems

When a body of knowledge is expressed as a logic program� logic programming systems

can be sometimes used to answer queries on the basis of this knowledge�
Prolog 
for PROgramming in LOGic� is the name of a family of logic programming

systems� Here is an example of what Prolog can do� We would like to use a Prolog
system to answer queries about the relations Mother � Father and Parent � To this end�
we save rules 
���
		� in a �le� in the following form�

�



mother�elizabeth�charles��

mother�diana�william��

mother�diana�harry��

father�charles�william��

father�charles�harry��

parent�X�Y� �� mother�X�Y��

parent�X�Y� �� father�X�Y��

The syntax of Prolog requires that an identi�er be capitalized if it represents a variable�
but not otherwise� every rule should be followed by a period� the symbol 	 is
represented by the two characters ��� More importantly� the closed world assumption
rule is dropped from each of the de�nitions 
���
		� before the program is presented to
Prolog� for Prolog� such a rule is implicit in the de�nition of every predicate� On the
other hand� Prolog does not permit any explicit references to classical negation� For
this reason� our de�nitions of Childless and Male cannot be given to a Prolog system
as directly as the others� But it is not di�cult to extend Prolog so that it will know
about classical negation� In the discussion of the mathematical principles of Prolog in
this survey� a program is allowed to contain both kinds of negation�

When you call a Prolog system� it responds with a login message� for instance�

Quintus Prolog Release ��	�
 �Sun��� SunOS ��	�

Copyright �C� 	��
� Quintus Corporation� All rights reserved�


	

 Geng Road� Palo Alto� California U�S�A� ��	�� �	����



Then you tell the system which �le contains your set of rules� and the system opens
and �consults� 
or �compiles�� it� After that� you can give the system queries� like

�� parent�elizabeth�charles��


�� is the Prolog prompt� or

�� mother�elizabeth�harry��

and Prolog will answer�yes to the �rst query� and no to the second�
A query may contain variables� this is understood as a request to �nd a tuple of

values of the variables that makes the query true� For example� in response to

�� parent�X�harry��

Quintus Prolog will say

X � diana�

You can ask for another solution� and the reply will be

X � charles�

If you ask for yet another answer� Prolog will reply no�
Sometimes Prolog does not produce an answer� If� for instance� the rules

ancestor�X�Y� �� parent�X�Y��

�



ancestor�X�Y� �� ancestor�X�Z�� ancestor�Z�Y��

are added to the �le� and the query

�� ancestor�william�harry��

is given to Quintus Prolog� then� instead of saying no� it will fail to terminate� Some
query evaluation procedures have better termination properties than the one employed
in Prolog systems� For instance� Ancestor queries can be successfully handled by the
procedure called SLG�

��� About this Survey

In several ways� this survey of the foundations of logic programming is di�erent from
most others available in the literature�

�� Our focus is primarily on semantics� rather than query evaluation�or� as some would
say� on the �declarative� semantics of logic programming� rather than �procedural��
The mathematical foundations of Prolog are discussed here� but this subject is not
given the same prominence as in most other surveys�

�� We treat programs as propositional objects� rules with variables are viewed as
�schemata� that represent their ground instances�

In the next two sections� such rules appear in examples only� This is because the
di�erence between a rule with variables and the set of its ground instances is less
essential semantically than from the perspective of query evaluation�

	� From the very beginning� we consider programs that may contain classical negation�

Negation as failure� conceptually more di�cult� is introduced only in Section ��
Historically� however� logic programming with classical negation is a relatively recent
invention� Programs without classical negation are called �normal�� and their special
properties are discussed in Sections 
�� and ����


� We accept the semantics of negation as failure given by the concept of an �answer

set�� and do not talk at all about alternative approaches� The �well�founded model�
is de�ned in Section ��� and the �completion� of a program in Section ���� because
these concepts are closely related to answer sets� but their role as stand�alone theories
of negation as failure is not discussed in any detail�

In the next section� we introduce �basic� programs that may include classical
negation� but not negation as failure� Programs with negation as failure are investigated
in Section �� All these programs are propositional� programs with variables are the
subject of Section �� In Section �� we describe two extensions of logic programs with
negation as failure� disjunctive programs and default theories�

� Basic Programs

Basic programs are programs without negation as failure� The expressive possibilities
of this subclass are much too limited for meaningful applications to knowledge

�



representation� but the study of its mathematical properties provides a necessary
foundation for further discussion�

��� Syntax

We begin with a nonempty set A of symbols� called atoms� The choice of A determines
the �language� of the programs under consideration� Atoms will be also called positive
literals� a negative literal is an atom preceded by the classical negation symbol �� A
literal is a positive literal or a negative literal� The set of literals will be denoted by LitA�
or simply Lit � For any atom A� the literals A and �A are said to be complementary�
A set of literals is inconsistent if it contains a complementary pair� and consistent

otherwise�
A basic rule is an ordered pair Head 	 Body � whose �rst member Head is a literal�

and whose second member Body is a �nite set of literals� A basic rule with the head
L� and the body fL�� � � � � Lkg can be also written as

L� 	 L�� � � � � Lk� 
	��

If the body is empty then 	 can be dropped�
A basic program is a set of basic rules� For instance� if A is fp� q� r� sg then the

rules

p�
�q�
r 	 p� q�
�r 	 p��q�
s	 r�
s	 p� s�
�s	 p��q��r


	��

form a basic program� Here� as in many other examples� every atom is used in the
program at least once� In such cases� it is not necessary to specify the set of atoms
explicitly� we can describe a program simply by listing its rules� and it will be presumed
that A is the set of all symbols used in the rules as atoms�

Note that� according to this de�nition� the body of a rule is a set of literals� rather
than a list� There is no such thing as the order of literals� or the number of repetitions
of a literal� in the body of a rule� Similarly� a program is a set of rules� and not a list�

In applications� A is usually the set of atomic sentences formed using some supply
of object� function and predicate constants� Sets of rules in such a language are often
represented by schemata that use metavariables for ground 
that is� closed� terms� For
instance� �schematic program� 
�� stands for a set of 
� rules� Schematic rules are
discussed in Section �� For the time being� we will only observe that� in the presence
of function symbols� a schematic rule can represent an in�nite set of instances� For
this reason� it is important that� in the de�nition above� a basic program is allowed to
consist of in�nitely many rules 
although the body of each rule is required to be �nite��

�



Here is an example of a program whose language has in�nitely many atoms
p�� p�� � � ��

p��
pn�� 	 pn 
n 
 ���



��

��� The Consequence Relation

In the development of classical logic� the �consequences� of a set of sentences  are
usually de�ned as the sentences that can be derived from  and from some �logical
axioms� using some �inference rules�� To put it di�erently� the set of consequences of
 is the smallest set of sentences that contains  and the logical axioms and is closed
under the inference rules�

The de�nition of the consequence operator for basic programs given below is� in
one way� simpler� The consequences of a program are literals� What is the counterpart
of the logical axioms and inference rules when literals only are involved� We adopt the
view that a literal follows from a set of literals �by pure logic� only when it belongs to
this set� except in the trivial case when the set is inconsistent� in this last case� every
literal follows from it� This is motivated by a simple fact of classical propositional logic�
If  is a consistent set of literals and a literal L is a consequence of  then L �  �

Problem ���� Prove this fact�

On the other hand� the elements of a program are rules� and not merely literals�
instead of requiring that the set of consequences of a program include all its rules� we
will require that it be �closed� under them�

This discussion suggests the following de�nitions� Let X be a set of literals� We
say that X is logically closed if it is consistent or equals Lit � We say that X is closed
under a basic program ! if� for every rule Head 	 Body in !� Head � X whenever
Body � X� By Cn
!� we denote the smallest set of literals which is both logically
closed and closed under !�

Problem ���� Prove that such a set always exists�

The elements of Cn
!� are called the consequences of !�
A basic program ! is consistent if Cn
!� is consistent� and inconsistent otherwise�

The following fact easily follows from the de�nition of Cn
!��

Proposition ���� For any basic program !�


 if ! is consistent then Cn
!� is the smallest set of literals closed under !�


 if ! is inconsistent then Cn
!� � Lit �

Let us �nd� for instance� the consequences of program 
	��� The program includes
two rules whose bodies are empty� it is clear that their heads

p��q 

	�

�



belong to every set of literals closed under 
	��� Furthermore� the program includes a
rule with the body p��q� consequently� the head

�r 


�

of this rule belongs to every such set also� The next step is to observe that there is one
more rule in the program whose body consists of the literals that are all among 

	�
and 


�� its head

�s 

��

also belongs to every set closed under the rules of 
	��� The set of literals generated
by now� 

	��

��� is both logically closed and closed under 
	��� It follows that this
is the set of all consequences of 
	���

Problem ���� Find the set of consequences of program 

���

Note that replacing the rule

�s	 p��q��r

in 
	�� by a �contrapositive� rule

r 	 p��q� s

would change the set of consequences of the program� 

�� would not be among the
consequences anymore� Unlike conditionals in classical logic� a basic rule is� generally�
not equivalent to its contrapositive�

Proposition ���� For any basic programs !� and !�� if !� � !� then Cn
!�� �
Cn
!���

The monotonicity of Cn is related to the fact that basic programs do not use
negation as failure� The consequence operator has also the following compactness
property�

Proposition ���� Every consequence of a basic program ! is a consequence of a �nite

subset of !�

Problem ���� Verify this assertion for program 

���

Let ! be a basic program� and X a set of literals� We say that X is supported by
! if� for each literal L � X� there exists a rule Head 	 Body in ! such that Head � L
and Body � X� A rule satisfying these conditions �supports� the presence of L in X�
it provides a �reason� for including L in X�

Proposition ���� For any consistent basic program !� Cn
!� is supported by !�

Problem ���� Verify this assertion for programs 
	�� and 

���

Problem ���� Show that without the consistency assumption this assertion would be
incorrect�

A head literal of a basic program ! is the head of a rule of !�

�



Corollary� If a basic program ! is consistent then every consequence of ! is a head

literal of !�

There is a simple syntactic su�cient condition for consistency� A basic program is
head�consistent if the set of its head literals is consistent�

Proposition ���� Every head�consistent basic program is consistent�

For instance� 

�� is head�consistent� Program 
	�� is consistent but not head�
consistent�

��� Bottom�Up Evaluation

Computing the set of consequences of program 
	�� in Section 
�
 is an example of the
process of �bottom�up evaluation� that can be applied to any basic program� In order
to describe this process� we de�ne� for any basic program !� the function T� from sets
of literals to sets of literals� as follows� T�X is

fHead � Head 	 Body � !� Body � Xg

if X is consistent� and Lit otherwise� Thus T�X is the set of literals that can be derived
from X �in one step� using either a rule of ! or �pure logic��

It is clear that T� is monotone� The discussion of this function below uses the
terminology and results of the theory of monotone functions reviewed in Appendix�

There is a simple relationship between the pre��xpoints of T� and the two closure
properties de�ned in Section 
�
�

Proposition ���� For any basic program ! and any set of literals X� X is a pre�

�xpoint of T� i
 X is both logically closed and closed under !�

Using Proposition A�	� we conclude�

Corollary� Cn
!� is the least �xpoint of T��

According to Proposition A�
� the union of the sets obtained by iterating T� on the
empty set is a subset of the least �xpoint of T�� For this particular function� the union
happens to be equal to this �xpoint�

Proposition ��	� For any basic program !�

Cn
!� �
�
n��

T n���

For example� if ! is 
	�� then

T �
�� � ��

T �
�� � fp��qg�

T �
�� � fp��q��rg�

T �
�� � fp��q��r��sg�

	�



The last set is a �xpoint of T�� so that� for every n � �� T n�� � T �
��� According to

Proposition 
���
Cn
!� � fp��q��r��sg�

If ! is in�nite then it is possible that none of the sets T n�� is a �xpoint of !� so
that every next term of the sequence adds new consequences to the set accumulated
earlier�

Problem ��	� Find the sets T n�� for program 

���

The process of bottom�up evaluation is di�erent from the process of computation
used in Prolog�the latter is �goal�directed�� The operation of Prolog for basic
programs is discussed in Section 
���

��� Splitting

Computing the consequences of a program can be sometimes simpli�ed by �splitting�
it into parts�

We say that a set U of literals splits a basic program ! if� for every rule
Head 	 Body in !� Body � U whenever Head � U � If U splits ! then the set of
rules in ! whose heads belong to U will be called the base of ! 
relative to U�� and
denoted by bU 
!��

For example� the set U � fp� q��q� rg splits program 
	��� and the base consists of
the �rst three rules of the program�

p�
�q�
r 	 p� q�



��

Problem ��
� A literal occurs in a basic program ! if it is the head of a rule of ! or
belongs to the body of a rule of !� A splitting set U for a basic program ! is trivial
if U contains no literals occurring in ! or contains all of them� Give an example of a
basic program that consists of 	�� rules and has no nontrivial splitting sets�

If U splits ! then� according to Proposition 
�� stated below� the consequences of
! can be computed in two steps� First� we �nd the set C of the consequences of the
base bU 
!�� Second� C is used to eliminate the elements of U from the remaining rules
of the program� If L � C then L is �trivial� and can be deleted from the bodies of the
remaining rules� if L � U n C then every rule with L in the body is �useless� and can
be deleted as a whole� After that� we �nd the consequences of the resulting program
and append them to C�

In the example� C � fp��qg and U n C � fq� rg� The complement of the base is

�r 	 p��q�
s	 r�
s	 p� s�
�s	 p��q��r�

		



We drop the rule with r in the body and delete p and �q from the bodies of the
remaining rules� The result is

�r�
s	 s�
�s	 �r�

The set of consequences of this program is f�r��sg� The union C � f�r��sg is the set
of consequences of 
	���

In general� the elimination process can be described using the following notation�
For any basic program !� any set U of literals and any subset C of U � eU 
!� C� stands
for the basic program obtained from ! by


 deleting each rule Head 	 Body such that Body � 
U n C� �� �� and


 replacing each remaining rule Head 	 Body by Head 	 
Body n U��

Here is a theorem expressing the soundness of the splitting method for computing
Cn
!��

Proposition ��
� Let U be a set of literals that splits a basic program !� and let

C � Cn
bU 
!��� If the set C�Cn
eU 
!nbU 
!�� C�� is consistent then it equals Cn
!��
otherwise� ! is inconsistent�

Problem ���� Verify the assertion of Proposition 
�� for the case when U is trivial

as de�ned in Problem 
����

Problem ����� Verify the assertion of Proposition 
�� for program 
	�� and U � fqg�

Problem ����� Show that the �rst assertion of Proposition 
�� would be incorrect
without the consistency assumption�

��� The SLD Calculus

Consider the program
p	 q�
q�
r 	 s�
r 	 p� q�



��

We would like to �nd out whether r is a consequence of this program� The program
has two rules with the head r� The �rst of them shows that r is a consequence of the
program if s is� There is no evidence� however� that s is a consequence� because the
program does not contain rules with s in the head� Let us try the second rule with the
head r� It shows that r is a consequence if both p and q are consequences� The only
rule with the head p shows that p is a consequence if q is� It remains to determine
whether q is a consequence of the program� The answer to this question is yes� because
q is the head of a rule with the empty body� We conclude that r is a consequence of


���

	




The reasoning that has led us to this conclusion can be symbolically represented as
follows�

j� �

j� fqg

j� fp� qg

j� frg



��

The sign j� here expresses �success��
Let us determine now whether r is a consequence of the program obtained from



�� by adding s to the body of the second rule�

p	 q�
q 	 s�
r 	 s�
r 	 p� q�



��

As before� the attempt to establish that r is a consequence by using the �rst rule with
the head r fails� and the second rule leads us to the question whether q is a consequence�
The program contains one rule with the head q� and its body is s� Consequently� we
need to determine whether s is a consequence� Since s is not the head of any rule� it
appears that the answer to this question must be no� so that r is not a consequence of


���

The reasoning that has led us to this conclusion can be symbolically represented
by a tree�

�j fsg

�j fqg

�j fsg �j fp� qg

�j frg



��

The sign �j expresses �failure��
Figures 

�� and 

�� are examples of derivations in the �SLD calculus� that we

will now introduce��

A goal is a �nite set of literals� In the SLD calculus for a basic program !� the
derivable objects are expressions of the forms j� G and �jG� where G is a goal� The

�The letters S� L and D are the initial letters of the words �selection�� �linear� and �de�nite��the
names of three ideas that were historically associated with goal�directed search in logic programming�
The notion of a de�nite clause and its relation to logic programs are discussed in Section 	�
 below�
The other two words come from the theory of resolution in automated reasoning�

	�



only axiom is
j� ��

In the inference rules� the following notation is used� For any literal L� Bodies
L� is
the set of the bodies of all rules in ! with the head L� There are two inference rules�
one for proving success and one for proving failure�


S�
j� G �B
j� G � fLg

if B � Bodies
L�


F �
�jG �B for all B � Bodies
L�

�jG � fLg

Note that the number of premises of 
F � equals the cardinality of Bodies
L�� In
particular� it can be zero or in�nite��

Figure 

�� is a derivation in the SLD calculus for program 

��� Every horizontal
bar in this �gure represents an application of 
S�� For instance� the transition from
j� fp� qg to j� frg at the end of the derivation is an application of 
S� with G � ��
L � r and B � fp� qg� Here B � Bodies
L� because

Bodies
r� � ffsg� fp� qgg�

Figure 

�� is a derivation in the SLD calculus for 

��� in which every bar is an
application of 
F �� The bars on top of the two branches of 

�� represent applications
of 
F � with zero premises�

If j� G is derivable in the SLD calculus for ! then we say that G succeeds relative
to !� If �jG is derivable then we say that G fails relative to !� For instance� frg
succeeds relative to 

�� and fails relative to 

���

Problem ����� Show that the goal fqg fails relative to the program that consists of
the rules

q 	 pn�
pn�� 	 pn



��


n 
 ���

Proposition ����� For any basic program !� no goal both succeeds and fails relative

to !�

Problem ����� Show that the goal fpg neither succeeds nor fails relative to the
program

p	 p� 
���

The following proposition expresses the soundness of the SLD calculus�

�For a calculus with in�nitary rules� a derivation is de�ned as a �possibly in�nite� tree without
in�nite branches� whose nodes are derivable objects such that every node either �a� is a leaf and an
axiom� or �b� can be obtained by applying an inference rule to its successor nodes�

	�



Proposition ����� For any basic program ! and any literal L�


 if fLg succeeds relative to ! then L is a consequence of !�


 if ! is consistent and fLg fails relative to ! then L is not a consequence of !�

This proposition is applicable to programs 

�� and 

��� because they are head�
consistent and consequently consistent 
Proposition 
����

Note that the SLD calculus may be unsound for failure if the program is inconsistent�
For instance� if ! is inconsistent and L is not a head literal of ! then L is a consequence
of ! that fails� �j fLg can be derived by one application of the failure rule to the empty
set of premises�

If the program is consistent then the success rule of the SLD calculus is complete�

Proposition ����� For any consistent basic program ! and any consequence L of !�
fLg succeeds relative to !�

The failure rule is generally incomplete even for consistent programs� For instance�
fpg does not fail with respect to 
���� We will now de�ne a syntactic property of basic
programs that guarantees the completeness of the SLD calculus for failure�

A level mapping is a function from literals to ordinals� A basic program ! is said to
be hierarchical if there exists a level mapping � such that� for every rule Head 	 Body

in !�
�
Head� � max

L�Body
�
L�� 
�	�

For instance� programs 

�� and 

�� are hierarchical� for each of them� we can take

�
s� � �� �
q� � 	� �
p� � 
� �
r� � ��

Program 

�� is hierarchical also� take �
pn� � n� To show that 

�� is hierarchical�
de�ne

�
pn� � n� �
q� � ��

Program 
��� is not hierarchical because� for this program� condition 
�	� turns into
�
p� � �
p�� The programs

p	 q�
q 	 p

and
pn 	 pn�� 
n 
 ��

are not hierarchical either�

Problem ����� Determine whether program 
	�� is hierarchical�

Here is a completeness theorem for the failure rule�

Proposition ����� For any hierarchical basic program ! and any literal L that is not

a consequence of !� fLg fails with relative to !�

	�



��	 Propositional Prolog

The work of Prolog� for a program without negation and variables� can be viewed as
an attempt to establish that a goal G succeeds or that it fails 
to �evaluate� G� by
constructing a derivation of one of the expressions j� G� �jG in the SLD calculus using
�backward chaining�� This kind of search was used in the examples at the beginning
of Section 
���

Here is a general description of the operation of Prolog� The task is to evaluate
a goal G relative to a �nite basic program !� If G is empty then j� G is an axiom�
Otherwise� in order to �nd a rule application that leads to one of the expressions j� G�
�jG� the goal G is represented in the form G� � fLg� L is called the �selected subgoal�
of G� Prolog attempts to evaluate� one by one� the goals G� �B for all B � Bodies
L��
If at least one of these goals succeeds then j� G can be derived by 
S�� If they all fail
then �jG can be derived by 
F ��

At the beginning of this process� the given program is represented as the list of
its rules� with the body of every rule represented as the list of its elements� Similarly�
the goal G is represented as a list� The order in which the elements of all these lists
are initially arranged can a�ect the search process� Speci�cally� it determines how
subgoals are selected 
Prolog tries the leftmost element of G �rst� and in what order
the elements of Bodies
L� are considered when the bottom�up application of 
S� or

F � is attempted� Ordering atoms and rules in a logic program �in the right way� is
an important part of the art of Prolog programming�

Consider� for instance� the operation of Prolog on program 

�� and the goal frg�
The initial stage of the process can be symbolically represented by the expression

�� frg�

Here �� is a label that will be replaced by either j� or �j at the end of the computation�
This expression is the �rst in the chain of �partial derivations� that describes the
operation of Prolog on the given goal� The �rst element of Bodies
r� is fsg� so that
the next partial derivation is

�� fsg

�� frg

Then we observe that Bodies
s� is empty� so that �j fsg can be derived by one
application of 
F � to the empty set of premises� This leads us to the partial derivation
in which the label �� in front of fsg is replaced by the failure symbol�


F �
�j fsg

�� frg


�
�

It remains to evaluate the second element of Bodies
r�� that is� fp� qg� First we

	�



form the partial derivation


F �
�j fsg �� fp� qg

�� frg

As soon as we know whether �� in front of fp� qg turns into j� or �j � the evaluation of
frg will be completed� Speci�cally� if a derivation of �j fp� qg is found then it will be
appended to 
�
� to form a derivation of �j frg�

� � �

F � 
F �

�j fsg �j fp� qg

F �

�j frg

If� on the other hand� a derivation of j� fp� qg is found then we will discard the
derivation of �j fsg in 
�
� and obtain a derivation of j� frg�

� � �

S�

j� fp� qg

S�

j� frg

In the process of evaluation of fp� qg� Prolog designates p as the selected subgoal�
because it is the leftmost element of the list p� q� The next partial derivation is

�� fq� qg

F �

�j fsg �� fp� qg

�� frg


���

In order to remain faithful to the actual operation of Prolog� it is important at this
stage not to remove repetitions in the expression fq� qg� This expression stands for a
singleton set that is represented as a list of length 
�

On the next step� the �rst member of the list q� q is selected� so that L � q and
G� � G � fqg� The next partial derivation is

�� fqg

�� fq� qg

F �

�j fsg �� fp� qg

�� frg

	�



After that� we form the partial derivation

�� �

�� fqg

�� fq� qg

F �

�j fsg �� fp� qg

�� frg


���

Here we recognize that j� � is an axiom� All occurrences of the label �� in the right
branch of 
��� are replaced by j�� and the left branch is discarded� The �nal product
of this search process is the derivation

j� �

S�

j� fqg

S�

j� fqg

S�

j� fp� qg

S�

j� frg


���

Note that this derivation includes a redundant step that is absent from 

��� The
di�erence is due to the fact that Prolog does not check the list representations of goals
for repetitions�

If we start with program 

�� instead of 

�� then the �rst several partial derivations
constructed in the process of evaluating frg are going to be the same� up to 
���� After
that� the partial derivation

�� fs� qg

�� fq� qg

F �

�j fsg �� fp� qg

�� frg

will be formed� Then s will be selected� and �j fs� qg will be derived from the empty
set of premises� Having replaced each �� by �j in the right branch of this partial

	�



derivation� we will get the derivation


F �
�j fs� qg


F �
�j fqg


F � 
F �
�j fsg �j fp� qg


F �
�j frg

The goal frg has failed�

Problem ����� Describe the work of Prolog on the program

p	 q� r
p	 r� s
r 	 u� v
s
u

and the goal fpg� How would the process be a�ected by appending v to the program
as an additional rule�

Problem ����� Describe the work of Prolog on the program

p	 p�
p

and the goal fpg�

The last example demonstrates the incompleteness of the Prolog search strategy�
Prolog never �nds the one�step derivation of j� fpg in the SLD calculus for this
program� This is similar to the case of nontermination of Prolog mentioned at the
end of Section 	���

��
 Normal Programs

A basic rule or program that does not contain the negation symbol � is said to be
normal� Many programs that we have used as examples are normal� Normal basic
programs are head�consistent� Consequently� any normal basic program is consistent

Proposition 
���� and any consequence of such a program is an atom 
Corollary to
Proposition 
����

Arbitrary basic programs can be reduced to normal basic programs in the following
way� For every atom A � A� select a new symbol A�� and let A� be the set of these
new symbols� For any L � LitA� let Norm
L� be the symbol from A �A� de�ned as
follows�

Norm
A� � A� Norm
�A� � A� 
A � A��

	�



The map Norm is extended to sets of literals� basic rules and basic programs in a
natural way�

Norm
X� � fNorm
L� � L � Xg�
Norm
Head 	 Body� � Norm
Head �	 Norm
Body��
Norm
!� � fNorm
R� � R � !g�

Thus� to transform ! into Norm
!�� we simply replace every negative literal �A in !
by A�� It is clear that Norm is a one�to�one map of the set of basic programs onto the
set of normal basic programs over the extended set of atoms A �A��

If� for example� ! is 
	��� then Norm
!� is

p�
q��
r 	 p� q�
r� 	 p� q��
s	 r�
s	 p� s�
s� 	 p� q�� r��


���

By Contr we denote the set of contradiction rules

A	 B�B��
A� 	 B�B�

for all pairs of distinct atoms A�B � A�

Proposition ����� For any basic program !�

Norm
Cn
!�� � Cn
Norm
!� � Contr ��

Moreover� if ! is consistent then

Norm
Cn
!�� � Cn
Norm
!���

Problem ���	� Show that the second assertion would not be correct without the
consistency assumption�

Proposition 
�	� shows that Norm is a one�to�one correspondence between the
consequences of ! and the consequences of the normal basic program Norm
!��Contr �
if ! is consistent then the contradiction rules can be dropped�

A normal basic program can be encoded by a propositional formula� The function
� from normal basic rules to propositional formulas is de�ned by

�
Head 	 Body� �
�

A�Body

A � Head �


�



For any normal basic program !� �! stands for the set of formulas �R for all rules
R � !� For example� if ! is 
��� then �! consists of the formulas

p�
q��
p � q � r�
p � q� � r��
r � s�
p � s � s�
p � q� � r� � s��

The following proposition describes the relationship between the set �! and the
concept of closure under ! de�ned in Section 
�
� Recall that� in propositional logic�
an interpretation is a function from atoms to truth values� and a model of a set of
formulas is an interpretation that satis�es all formulas in the set� We will identify an
interpretation with the set of atoms to which it assigns the value true�

Proposition ����� For any normal basic program !� an interpretation I is a model

of �! i
 I is closed under !�

Corollary �� For any normal basic program !� Cn
!� is the least model of �!�

Corollary �� For any normal basic program !� Cn
!� is the set of atoms entailed

by �!�

A clause is a disjunction of literals� A clause is de�nite if exactly one of its literals
is positive� It is clear that� for any normal basic rule R� the formula �R is equivalent
to a de�nite clause� and� conversely� every 
propositional� de�nite clause is equivalent
to a formula of this form� Corollaries 	 and 
 show that recognizing the consequences
of a normal basic program amounts to recognizing the atoms that belong to the least
model of a set of de�nite clauses� or� equivalently� the atoms that are entailed by such
a set�

� Negation as Failure

Now we turn to the study of logic programs with negation as failure� The examples
discussed in Section 	�
 are 
schematic representations of� programs of this kind�

��� Answer Sets

A rule element is a literal possibly preceded by the negation as failure symbol not � A
rule is an ordered pair Head 	 Body � whose �rst member Head is a literal� and whose
second member Body is a �nite set of rule elements� For any set X of literals� we will
denote the set fnot L � L � Xg by not
X�� Then any rule can be represented as


	



Head 	 Pos � not
Neg�� for some �nite sets of literals Pos � Neg� The rule with the
head L� and the body fL�� � � � � Lm�not Lm��� � � � �not Lng will be also written as

L� 	 L�� � � � � Lm�not Lm��� � � � �not Ln� 
���

A program is a set of rules� For instance�

p�
q 	 p�not r�
q 	 r�not p�
r 	 p�not s


���

is a program� This program does not contain the classical negation symbol �� the
syntax of rules allows us to insert this symbol in front of any of the atoms p� q� r� s
anywhere in the program�

We would like to generalize the de�nition of Cn
!� from Section 
�
 to arbitrary
programs�

Intuitively� the presence of a rule element not L in the body of a rule limits the
applicability of the rule to the case when the program as a whole provides no possibilities
for deriving L� For instance� rules 
��� di�er from the basic rules

p�
q 	 p�
q 	 r�
r 	 p


���

in that


 the second rule of 
��� allows us to derive q from p only if r cannot be derived�


 the third rule of 
��� allows us to derive q from r only if p cannot be derived�


 the last rule of 
��� allows us to derive r from p only if s cannot be derived�

This informal description of how the symbol not �blocks� the application of program
rules is circular� because it characterizes the process of applying rules in terms of what
can be derived using these rules� Nevertheless� for any set X of literals� that description
makes it possible to �test� the claim that rules 
��� allow us to derive the elements of
X and nothing else�

Take� for instance� X to be fp� rg� If p and r are indeed derivable� and the other
literals are not� then the second rule of 
��� is �blocked� in view of the presence of
not r in its body� and the third rule is �blocked� by the presence of not p� the other
two rules are not �blocked�� Then the e�ect of rules 
��� is the same as the e�ect of

p�
r 	 p


���







�the subset of 
��� obtained by deleting its second and third rules� This is a basic
program� The set of its consequences is fp� rg� which is exactly the set X that we
initially assumed to be the set of derivable literals� This fact con�rms that fp� rg was
a �good guess��

Generally� there can be several �good guesses� about the result of application of a
given set of rules� Consider� for instance� the program

p	 not q�
q 	 not p�
r 	 p�
r 	 q�


�	�

There are two reasonable conjectures about what can be derived using these rules� One
is that we can derive p and r� but not q� If so� then 
�	� has the same meaning as the
basic program

p�
r 	 p�
r 	 q�


�
�

The set of consequences of this program is� indeed� fp� rg� The other possibility is that
q and r can be derived� but not p� In this case� 
�	� has the same meaning as the basic
program

q�
r 	 p�
r 	 q�


���

whose consequences are� indeed� q and r�
This example leads us to the view that negation as failure can make the rules of

a program �nondeterministic�� There can be several �correct� ways to organize the
process of deriving literals using the rules of a program that contains negation as failure�
Each of them produces a di�erent set of literals� these sets will be called the �answer
sets� for the program� A consequence of a program is a literal that is guaranteed to be
produced no matter which derivation process is selected�a literal that belongs to all
answer sets� For instance� the only answer set for 
��� is fp� rg� so that the consequences
of this program are p and r� the answer sets for 
�	� are fp� rg and fq� rg� so that its
only consequence is r�

In order to give the de�nition of an answer set� we need a general description of the
process of reducing an arbitrary program to a basic program that was used above to
obtain 
��� from 
���� and 
�
�� 
��� from 
�	��

Let ! be a program� and X a set of literals� The reduct of ! relative to X is the
basic program obtained from ! by


 deleting each rule Head 	 Pos � not
Neg� such that Neg �X �� �� and


 replacing each remaining rule Head 	 Pos � not
Neg� by Head 	 Pos �


�



This program will be denoted by !X � We say that X is an answer set for ! if
Cn
!X� � X�

It is clear that every answer set is logically closed� We have seen that a program
can have one or several answer sets� Some programs have no answer sets� for instance

p	 not p� 
���

A consequence of a program is a literal that belongs to all its answer sets�
Alternatively� the consequences of a program can be characterized as the literals that
belong to all its consistent answer sets� It is clear that the set of consequences is
logically closed�

If a program ! is basic then its reduct relative to any set of literals is !� It follows
that the only answer set for a basic program ! is Cn
!�� so that the new de�nition of a
consequence� applied to a basic program� is equivalent to the one given in Section 
�
�

For the set of consequences of a program !� we will use the same notation Cn
!�
as in the basic case�

On programs with negation as failure� the consequence operator is not monotone�
For instance� the set of consequences of fp	 not qg is fpg� if we add q to this program
as another rule� the set of consequences will be fqg� In this sense� logic programming
with negation as failure is a �nonmonotonic formalism��

Problem ���� Find all answer sets for the program

p	 not q�
q 	 not p�
r 	 not r�
r 	 p�


���

Problem ���� Find all answer sets for the program

pn�� 	 not pn 
n 
 ��� 
���

Problem ���� Find all answer sets for the program

pn 	 not pn�� 
n 
 ��� 
���

Proposition ���� If X and Y are answer sets for a program ! and X � Y then

X � Y �

Corollary� Every program ! satis�es exactly one of the following conditions�


 ! has no answer sets�


 the only answer set for ! is Lit �


 ! has an answer set� and all its answer sets are consistent�


�



The consistency of a program is de�ned as it was de�ned for basic programs in
Section 
�
� A program is consistent if the set of its consequences is consistent� and
inconsistent otherwise� In the �rst two cases listed in the statement of the corollary� !
is inconsistent and Cn
!� � Lit � In the third case� ! is consistent�

The de�nition of closure under a program given in Section 
�
 is extended to
arbitrary programs as follows� A set X of literals is closed under a program ! if�
for every rule Head 	 Pos � not
Neg� in !� Head � X whenever Pos � X and
Neg �X � ��

Proposition ���� Every answer set for a program ! is closed under !�

The set of consequences of !� however� is not necessarily closed under !� This can
be illustrated by program 
�	��

We say that a set X of literals is supported by ! if� for each literal L � X� there
exists a rule Head 	 Pos � not
Neg� in ! such that

Head � L� Pos � X� Neg �X � ��

Proposition 
�� can be generalized to arbitrary programs in the following way�

Proposition ���� Any consistent answer set for a program ! is supported by !�

As in the case of basic programs� a head literal of a program ! is the head of a rule
of !�

Corollary �� Any element of any consistent answer set for a program ! is a head

literal of !�

Corollary �� If a program ! is consistent then every consequence of ! is a head literal

of !�

As in the case of basic programs� a program ! is head�consistent if the set of its
head literals is consistent� Proposition 
�� can be generalized to arbitrary programs as
follows�

Proposition ���� If a program ! is head�consistent then every answer set for ! is

consistent�

This proposition tells us that a head�consistent program cannot belong to the second
of the three groups listed in the corollary to Proposition ��	� It is possible� however�
that a head�consistent program belongs to the �rst group� so that such a program can
be inconsistent� For instance� 
��� is a head�consistent program without answer sets�
An additional condition needed to guarantee the existence of an answer set� called
�order�consistency�� is discussed in Section ����

��� Tight Programs

According to Propositions ��
 and ���� every consistent answer set is closed and
supported� Proposition ��� below shows that for a large class of programs the converse is


�



also true� so that the two properties� closure and supportedness� completely characterize
the class of consistent answer sets for programs in this class�

A program ! is tight if there exists a level mapping � such that� for every rule
Head 	 Pos � not
Neg� in !�

�
Head� � max
L�Pos

�
L��

Note that this condition does not impose any restriction on Neg� that is� on the rule
elements that include negation as failure� If Pos � � in every rule of the program then
the program is trivially tight� A basic program is tight i� it is hierarchical�

Problem ���� Determine which of the programs 
���� 
�	�� 
����
��� are tight�

Proposition ���� For any tight program ! and consistent set X of literals� X is an

answer set for ! i
 X is both closed under ! and supported by !�

Problem ���� Show that this assertion would be incorrect without the assumption
that ! is tight�

Any program can be �tightened� at the price of introducing in�nitely many new
atoms� For every A in the set A of atoms and for every integer n �� �� let An be a new
symbol� For every n � �� de�ne


�A�n � A�n

for any atom A� and
Xn � fLn � L � Xg

for any set X of literals� Intuitively� An says that A can be �established in n steps�
using the rules of the program� A�n says that A can be �refuted in n steps��

Let A� be the extended set of atoms obtained from A by adding the new symbols
An 
n �� ��� The tightening of ! is the program with the set of atoms A� that consists
of


 the rules
Headn�� 	 Posn � not
Neg�

for every rule Head 	 Pos � not
Neg� in ! and every n � �� and


 the rules
A	 An�
�A	 A�n

for every A � A and every n � ��

For example� the tightening of
p	 p�not q�
�p	 not p


�



consists of the rules
pn�� 	 pn�not q�
p�n�� 	 not p�
p	 pn�
�p	 p�n�
q 	 qn�
�q	 q�n

for all n � ��
The tightening of any program is tight� de�ne

�
An� � jnj� �
A� � ��

The tightening of a program is its �conservative extension��

Proposition ���� A subset of LitA is an answer set for a program ! i
 it can be

represented in the form X � LitA� where X is an answer set for the tightening of !�

Corollary� If !� is the tightening of a program ! then

Cn
!� � Cn
!�� � LitA�

��� Well�Founded Consequences

In Section 
�� we saw that the set of consequences of a basic program ! is the
least �xpoint of a certain monotone function� called T�� and that this set can be
approximated from below by iterating that function on the empty set� A similar
construction can be de�ned for programs with negation as failure� However� the
monotone function involved in it is de�ned in a more complicated way than T�� Also�
the least �xpoint of this function is sometimes a proper subset of the set of consequences�
so that some consequences may be impossible to reach by iterating it�even for a �nite
program� Nevertheless� this function and its �xpoints are important� both theoretically
and computationally�

For any program !� the function �� from sets of literals to sets of literals is de�ned
by the equation

��X � Cn
!X��

It is clear that the answer sets for ! can be characterized as the �xpoints of ���

Proposition ��	� For any program !� �� is anti�monotone�

As discussed in Appendix� it follows that ��� is monotone� and its least and greatest
�xpoints limit the �xpoints of �� from below and from above� The literals that belong
to the least �xpoint of ��� are said to be well�founded relative to !� The literals that
do not belong to the greatest �xpoint of ��� are unfounded relative to !� Thus any
program partitions the set of literals into three groups� the well�founded literals� the
unfounded literals� and the rest�

The second part of Proposition A��� in application to this case� can be stated as
follows�


�



Proposition ��
� Any answer set for a program !


 includes all literals that are well�founded relative to !� and


 includes no literals unfounded relative to !�

Corollary� For any program ! and any literal L�


 if L is well�founded relative to ! then L is a consequence of !�


 if ! is consistent and L is unfounded relative to ! then L is not a consequence

of !�

The Corollary to Proposition A��� in application to this case� can be stated as
follows�

Proposition ���� If every literal is either well�founded or unfounded relative to !
then the set of well�founded literals is the only answer set for !�

If ! is �nite then the literals that are well�founded or unfounded relative to ! can
be found by iterating �� on the empty set or on the set of all literals� as discussed at
the end of Appendix� For instance� in case of program 
�	��

���� � ��
���� � fp� q� rg�
���� � ��

so that � is the least �xpoint of ���� and fp� q� rg is its greatest �xpoint� We see that
the set of well�founded literals is empty� so that p is a consequence of the program that
is not well�founded� The only unfounded literals are the negative literals �p��q��r�

Problem ���� Find the well�founded and unfounded literals for programs 
��� and

����
����

��� Splitting a Program with Negation as Failure

The splitting process described in Section 
�� for basic programs can be extended to
arbitrary programs as follows� We say that a set U of literals splits a program ! if� for
every rule Head 	 Pos � not
Neg� in !� Pos � Neg � U whenever Head � U � If U
splits ! then the set of rules in ! whose heads belong to U is the base of ! 
relative
to U�� denoted by bU 
!��

For instance� program 
��� is split by the sets fpg and fp� sg 
and by several others��
The base of 
��� relative to each of these two sets consists of its �rst rule� p�

For any program !� any set U of literals and any subset C of U � eU 
!� C� stands
for the program obtained from ! by


 deleting each rule Head 	 Pos � not
Neg� such that Pos � 
U n C� �� � or
Neg � C �� ��


�




 replacing each remaining rule Head 	 Pos � not
Neg� by

Head 	 
Pos n U� � not
Neg n U��

Proposition ����� Let U be a set of literals that splits a program !� A consistent

set of literals is an answer set for ! i
 it can be represented in the form C��C�� where

C� is an answer set for bU 
!� and C� is an answer set for eU 
! n bU 
!�� C���

This theorem suggests the following approach to computing the consistent answer
sets for a program ! that is split by some set U � First �nd all answer sets for the base
bU 
!�� For each of these sets C�� compute the program eU 
! n bU 
!�� C��� and �nd
all its answer sets� For each of these sets C�� form the union C� � C�� The consistent
unions found in this way are the consistent answer sets for !� The intersection of all
these consistent unions is Cn
!��

Take program 
��� as an example� Let U � fp� sg� Then bU 
!� is the basic program
whose only rule is p� and the only answer set C� for this program is fpg� Furthermore�
! n bU 
!� is

q 	 p�not r�
q 	 r�not p�
r 	 p�not s�

and eU 
! n bU 
!�� C�� is
q 	 not r�
r�

The only answer set C� for this program is frg� We conclude that the union of C�

and C�� that is� fp� rg� is the only consistent answer set for 
���� 
By the corollary to
Proposition ��	� it follows that 
��� has no other answer sets��

As another application� consider rules 
���
	�� from the royal family example

Section 	�
�� Recall that metavariables x� y� z in the schematic rules stand for the
constants Elizabeth �� � ��Harry � This program ! is split by the set U consisting of
all positive Mother � Father � Parent � Grandparent and Ancestor literals� all negative
Childless literals� and all Male literals� The base bU 
!� is a consistent basic program�
let C� be the set of its consequences� The remaining rules ! n bU 
!� are the closed
world assumptions� and all rules in eU 
!nbU 
!�� C�� are quite simple� Their bodies are
empty� and their heads are complementary to the Mother � Father � Parent � Childless �
Grandparent and Ancestor literals in UnC�� This program is identical to its only answer
set C�� According to Proposition ��	�� C� �C� is the only answer set for 
���
	���

The following problem shows how this example can be generalized�

Problem ��	� The closed world assumption rule for a literal L is the rule

L	 not L�

where L stands for the literal complementary to L� Let ! be a program� let C be a
consistent set of literals that do not occur in !� and let !� be the program obtained


�



from ! by adding the closed world assumption rules for all literals in C� 
a� Show that�
if X is a consistent answer set for !� then

X � fL � C � L 	� Xg

is a consistent answer set for !� 
b� Show that every consistent answer set for !� can
be represented in this form for some consistent answer set X for !�

��� Strati�ed and Order�Consistent Programs

Both examples used above to illustrate the process of splitting belong to an important
class of programs� called �strati�ed�� This property guarantees that the program is
split by a nonempty set U such that the base of the program relative to U does not
contain negation as failure� Moreover� the result of eliminating the elements of U from
the rest of the program is again a strati�ed program� Consequently� by repeating the
splitting process several times� we can reduce any �nite strati�ed program to a series
of basic programs�

A program ! is strati�ed if there exists a level mapping � such that� for every rule
Head 	 Pos � not
Neg� in !�

�
Head� 
 maxL�Pos �
L��
�
Head� � maxL�Neg �
L��


���

It is clear that any basic program is strati�ed 
take � identically equal to 	�� For
program 
���� we can take

�
L� �

��
�

� if L � q�
	� if L � r�
�� otherwise�

Programs 
�	� and 
��� are not strati�ed�
Any strati�ed program is split by the set of atoms on which � is minimal� and the

base of the program relative to this set is a basic program�
The following theorem gives another important property of strati�ed programs�

Proposition ����� A strati�ed program has at most one answer set�

�Order�consistency� is a condition more general than strati�cation� which� in
combination with head�consistency 
Section ��	�� implies the existence of an answer
set� Its de�nition uses the following notation� For any program ! and any literal
L� !�

L
and !�

L
are the smallest sets of literals such that L � !�

L
and� for every rule

Head 	 Pos � not
Neg� in !�


 if Head � !�
L
then Pos � !�

L
and Neg � !�

L
�


 if Head � !�
L
then Pos � !�

L
and Neg � !�

L
�

��



We say that a program ! is order�consistent if there exists a level mapping � such that
�
L�� 
 �
L�� whenever L� � !�

L�
�!�

L�
�

For example� a program is order�consistent if� for every literal L�

!�
L
�!�

L
� ��


Programs with this property are called strict�� To see why all strati�ed programs are
order�consistent� note that for any level mapping � satisfying 
��� and for any literals
L� and L��


 �
L�� � �
L�� whenever L� � !�
L�
�


 �
L�� 
 �
L�� whenever L� � !�
L�
�

A �nite program ! is order�consistent i�� for every atom A� A �� !�
A
�

Problem ��
� For each of the programs 
�	� and 
��� determine whether it is 
a�
strict� 
b� order�consistent�

Proposition ����� If a program is head�consistent and order�consistent then it is

consistent�

From the last two propositions we see that a program which is both head�consistent
and strati�ed has a unique answer set�

��	 The SLDNF Calculus

The de�nition of the SLDNF calculus associated with a program ! generalizes the
de�nition of the SLD calculus introduced in Section 
�� to programs with negation as
failure� Its derivable objects are again expressions of the forms j� G and �jG� except
that a goal G is now de�ned as a �nite set of rule elements� The axiom is the same as
before�

j� ��

There are four inference rules�


SP �
j� G �B
j� G � fLg

if B � Bodies
L�


FP �
�jG �B for all B � Bodies
L�

�jG � fLg


SN�
j� G �j fLg
j� G � fnot Lg


FN�
j� fLg

�jG � fnot Lg

�	



As in Section 
��� Bodies
L� stands here for the set of the bodies of all rules in !
whose head is L� The success and failure rules for positive subgoals� 
SP � and 
FP ��
look the same as rules 
S� and 
F � of the SLD calculus� The rules for negative subgoals�

SN� and 
FN�� allow us to derive success from failure and failure from success� As a
result� failure expressions can occur now in derivations of success expressions� and the
other way around�

For instance� here is a derivation in the SLDNF calculus for program 
����


FP �
j� � �j fsg


SN�
j� fnot sg


SP �
j� fp�not sg j� �


SP � 
SP �
j� frg j� fpg


FN� 
FN�
�j fp�not rg �j fr�not pg


FP �
�j fqg

If j� G is derivable in the SLDNF calculus for ! then we say that G succeeds

relative to !� If �jG is derivable then we say that G fails relative to !� For instance�
the derivation above demonstrates that fqg fails with respect to program 
����

Propositions 
�	� and 
�		 can be extended to programs with negation as failure in
the following way�

Proposition ����� For any program !� no goal both succeeds and fails relative to !�

Proposition ����� For any program ! and any literal L�


 if fLg succeeds relative to ! then L is a well�founded consequence of !�


 if ! is consistent and fLg fails relative to ! then L is unfounded relative to !�

The last proposition is the soundness theorem for the SLDNF calculus� Its second
half� in combination with Proposition ��� and its corollary� shows that if fLg fails with
respect to a consistent program ! then L does not belong to any answer set for !� nor
is a consequence of !�

Proposition ��	� shows also that if L is neither well�founded nor unfounded then
fLg neither succeeds nor fails� For instance� the goals fpg� fqg� frg neither succeed
nor fail relative to program 
�	��

Problem ���� Determine for which values of n the goal fpng succeeds relative to
program 
���� and for which values of n it fails�

�




The concept of a hierarchical program 
Section 
���� used in the statement of the
completeness theorem� is extended to programs with negation as failure in the following
way� We say that a program ! is hierarchical if there exists a level mapping � such
that� for every rule Head 	 Pos � not
Neg� in !�

�
Head � � max
L�Pos�Neg

�
L��

For example� program 
��� is hierarchical� programs 
�	� and 
��� are not� It is clear
that any hierarchical program is strati�ed� and consequently has at most one answer
set�

Proposition ����� Let ! be a hierarchical program� For any literal L�


 if ! is consistent and L is a consequence of ! then fLg succeeds relative to !�


 if L is not a consequence of ! then fLg fails relative to !�

��
 Prolog with Negation as Failure

In order to describe the work of Prolog in the presence of negation as failure� we need
to note the following fact�

Proposition ����� For any goals G� and G�� if G� fails then G� �G� fails also�

This proposition shows that adding the �thinning� rule


T �
�jG�

�jG� �G�

to the calculus described above would not change the set of derivable expressions�
The work of propositional Prolog can be described as proof search in the calculus

consisting of the rules 
SP �� 
FP �� 
SN�� 
FN� and 
T �� Search proceeds as described
in Section 
��� except that now the selected subgoal can include the negation as failure
symbol� IfG� the goal to be evaluated� is represented as G��fLg then the rule applied in
the derivation last will be either 
SP � or 
FP �� If G is represented as G��fnot Lg then
the rule applied in the derivation last will be 
SN�� 
FN� or 
T �� Prolog determines
which one by attempting to evaluate fLg� If this goal succeeds then �jG can be derived
by 
FN�� If it fails then Prolog evaluates G�� If G� succeeds then j� G will follow by

SN�� If G� fails then �jG will follow by 
T ��

Consider� for instance� the operation of Prolog on the program that consists of one
rule

p	 not q

and the goal fpg� The search process �rst produces the partial derivation

�� fpg

��



then
�� fnot qg

�� fpg

and then
�� fqg

�� fnot qg

fpg

Since Bodies
q� is empty� we next arrive at


FP �
�j fqg

�� fnot qg

�� fpg

and then at

FP �

�� � �j fqg

�� fnot qg

�� fpg

The next step leads to the derivation


FP �
j� � �j fqg


SN�
j� fnot qg


SP �
j� fpg

Consider now the program
p	 not q�
q

and the same goal fpg� The �rst three partial derivations will be the same as before�

��



and then we will arrive at the derivation

j� �

SP �

j� fqg

FN�

�j fnot qg

FP �

�j fpg

Finally� consider the program

p	 not r�not q�
q

and the same goal fpg� The search process leads �rst to the partial derivation

�� fnot r�not qg

�� fpg

then to
�� frg

�� fnot r�not qg

�� fpg

and then to

FP �

�j frg

�� fnot r�not qg

�� fpg

Next Prolog evaluates the goal fnot qg� We obtain �rst


FP �
�� fnot qg �j frg

�� fnot r�not qg

�� fpg

��



then
�� fqg


FP �
�� fnot qg �j frg

�� fnot r�not qg

�� fpg

and then
�� �

�� fqg

FP �

�� fnot qg �j frg

�� fnot r�not qg

�� fpg

The �nal result is the derivation

j� �

SP �

j� fqg

FN�

�j fnot qg

T �

�j fnot r�not qg

FP �

�j fpg

Problem ����� Describe the work of Prolog on the program

p	 not q�
q 	 not r� s

and the goal fpg� How would the process be a�ected by inserting not in front of s in
the last rule�

��� Normal Programs with Negation as Failure

A rule element� rule or program is normal if it does not contain the classical negation
symbol �� By Proposition ���� every answer set for a normal program is consistent� By
Corollary 	 to Proposition ���� it follows that every answer set for a normal program is
a set of atoms� Program 
��� is an example of a normal program without answer sets�

��



In Section 
��� we de�ned an encoding Norm of basic programs by normal basic
programs over a larger set of atoms� In order to extend this encoding to arbitrary rules
and programs� we de�ne

Norm
Head 	 Pos � not
Neg��

to be
Norm
Head �	 Norm
Pos� � not
Norm
Neg���

Here are two generalizations of Proposition 
�	� to arbitrary programs�

Proposition ���	� For any program ! and any set X of literals� the following

conditions are equivalent�

�i� X is an answer set for !�

�ii� Norm
X� is an answer set for Norm
!� � Contr �

Moreover� if X is consistent then these conditions are equivalent to

�iii� Norm
X� is an answer set for Norm
!��

Corollary� For any program !�

Norm
Cn
!�� � Cn
Norm
!� � Contr ��

Adding Contr in the right�hand side of this equality may be needed even if ! is
consistent� This can be seen from the following counterexample�

p	 not q�
q 	 not p�
�p�

In Section 
��� we de�ned a function � that encodes normal basic rules by
propositional formulas� The extension of this function to normal rules with negation
as failure� de�ned below� replaces negation as failure by classical negation� For any set
B of normal rule elements� by Bnot

� we denote the conjunction of the literals obtained
from the elements of B by substituting � for each not � Then� for any normal rule
Head 	 Body � we de�ne�

�
Head 	 Body� � Bodynot� � Head �

For instance�
�
p	 q�not r�

is
q � �r � p�

For any normal program !� �! stands for the set of formulas �R for all rules R � !�
The following theorem is a counterpart of Corollary 	 to Proposition 
�	��

��



Proposition ���
� For any normal program !�


 any answer set for ! is a model of �!�


 no proper subset of an answer set for ! is a model of �!�

In other words� an answer set for a normal program ! is a �minimal model� of �!�
The converse is not necessarily true� even for hierarchical programs� For instance� if !
is

p	 not q�
q 	 not r


���

then the minimal models of �! are fqg and fp� rg� the latter is not an answer set for !�
The completion of a �nite normal program !� �comp!� is the set of formulas

H �
�

B�Bodies�H	

Bnot
�

for all atoms H� For example� the completion of 
��� is

p � �q�
q � �r�
r � false �

It is clear that all formulas in �! are propositional consequences of �comp!�
The completion of a program is closely related to the two properties of programs

discussed in Sections ��	 and ��
�closure and supportedness�

Proposition ����� For any �nite normal program !� an interpretation I is a model

of �comp! i
 I is both closed under ! and supported by !�

Using Proposition ���� we conclude that answer sets for a �nite tight normal
program can be characterized in terms of propositional logic�

Corollary� For any �nite tight normal program !� an interpretation I is an answer
set for ! i
 I satis�es �comp!�

Problem ����� Use this corollary to �nd the answer sets for programs 
���� 
�	� and

����

� Schematic Programs

To turn logic programming into a usable representational and computational tool� we
need to add variables to the language of programs introduced above� In this section� we
de�ne the syntax and semantics of programs with variables� show how they can be used
for representing defaults� and then describe the operation of Prolog in the presence of
variables�

��



��� Syntax and Semantics

Consider a �rst�order language L without equality that has at least one object constant
and at least one predicate constant� Literals of this language will be called schematic

literals� The de�nitions of a schematic rule element� a schematic rule and a schematic

program are parallel to the de�nitions of a rule element� a rule and a program given
in Section ��	� with schematic literals used instead of literals� For instance� 
�� is a
schematic program in the language with the object constants Elizabeth �� � ��Harry � no
function constants� and the binary predicate constant Mother �

For any schematic rule R� Ground 
R� stands for the set of all ground instances of
R� For any schematic normal program !�

Ground 
!� �
�
R��

Ground 
R��

It is clear that Ground 
R� and Ground 
!� are programs in the sense of Section ��	� if
the set of atoms A is taken to be the set of all ground atoms of L�

Consider� for instance� the language with the object constant �� the unary function
constant s� and the unary predicate constant p� If ! consists of one schematic rule

p
s
x��	 not p
x�

then Ground 
!� is program 
���� assuming that pn is identi�ed with p
s
n
����

Problem ���� Find a program with the same set of atoms as 
��� that cannot be
represented in the form Ground 
!� for a �nite schematic program !�

An answer set for a schematic program ! is an answer set for Ground 
!�� Con�
sequences� consistency� well�founded and unfounded literals are de�ned for schematic
programs in a similar way� Note that the consequences of a schematic program are
ground literals of L�

��� Representing Defaults

One important use of negation as failure in schematic programs is for representing
�defaults�� Consider� for instance� the rule

Married 
x� y�	 Father 
x� z��Mother 
y� z�� 
���

asserting that two persons with a common child are a married couple� One of the
consequences of this rule� in combination with 
�� and 
	��� is

Married
Charles �Diana�� 
�	�

Problem ���� Verify this assertion�

In real life� of course� the general assertion expressed by 
��� is known to admit
exceptions� so that it would be better to treat 
�	� as a �default conclusion� in the

��



absence of evidence to the contrary� The weaker assertion that two persons with a
common child are normally married to each other can be expressed by the schematic
rule

Married
x� y�	 Father 
x� z��Mother 
y� z��not Ab
x� y�� 
�
�

Here Ab is an auxiliary �abnormality� predicate� The program consisting of rules 
���

	�� and 
�
� leads to conclusion 
�	� also�

Problem ���� Verify this assertion�

The di�erence between �rigid� rule 
��� and �default� rule 
�
� is that� with the
latter used instead of the former� conclusion 
�	� becomes defeasible� The rule

Ab
Charles �Diana� 
���

expresses that Charles and Diana are a possible exception to the default about couples
with common children� By adding it to the program� we will �nonmonotonically� make

�	� undecidable�

Problem ���� Verify that the program consisting of rules 
��� 
	��� 
�
� and 
����
indeed� has neither 
�	� nor the negation of 
�	� among its consequences�

Moreover� if we wish to assert that Charles is not married to Diana� this can be
expressed by

�Married
Charles �Diana�� 
���

In combination with 
��� 
	�� and 
���� this rule would lead to an inconsistency� the
schematic program with rules 
��� 
	�� and 
�
��
��� is consistent�

Problem ���� Verify these assertions�

A schematic rule can be used to express that all objects in a certain class are
exceptions to a default� For instance� we can express that adults are normally employed�
but high school dropouts are possible exceptions� by writing

Employed 
x�	 Adult
x��not Ab
x��
Ab
x�	 Dropout 
x��

Problem ���� Blocks B�� � � � � B�� are normally located on the table� However� B� is
not on the table� and we are not sure about B�� Express these assertions as a schematic
program in the language with variables for blocks� the object constants B�� � � � � B�� and
the unary predicate constants OnTable and Ab� Find the consequences of this program�

Problem ��	� Birds normally �y� However� penguins do not �y� Opus is a penguin�
and Tweety is not� Express these assertions as a schematic program in the language
with variables for birds� the object constants Opus and Tweety and the unary predicate
constants Flies � Penguin and Ab� Find the consequences of this program�

If several defaults are involved then several abnormality predicates have to be used�
one per default�

��



Problem ��
� Quakers are normally paci�sts� and Republicans are normally not
paci�sts� Alice and Bob are Quakers� and Carol is not� Bob and Carol are Republicans�
and Alice is not� Express these assertions as a schematic program in the language with
variables for people� the object constants Alice� Bob and Carol � and the unary predicate
constants Quaker � Republican � Paci�st � Ab� and Ab�� Find the consequences of this
program�

��� The SLDNF Calculus for Schematic Programs

A schematic goal is a �nite set of schematic literals� In the SLDNF calculus for a
schematic program� derivable objects are expressions of the forms j� G � � and �jG�
where G is a schematic goal and � is a substitution� whose support is a subset of
the set of variables occurring in G� If j� G � � is derivable then we will say that G
succeeds relative to ! with computed answer substitution �c�a�s�� �� if �jG is derivable
then we will say that G fails relative to !� The soundness theorem 
Corollary 
 to
Proposition ��	 below� shows that if fLg succeeds with c�a�s� � then every ground
instance of L� is a consequence of the program� if fLg fails then no ground instance of
L is a consequence�

The following schematic program will be used here for illustration�

p
a� b��
q
b��
r
y�	 p
x� y��not q
x��


���

We will see that� for this program� fr
x�g succeeds with c�a�s� fx	bg� This fact shows
that r
b� is a consequence of the program�

In propositional case 
Section ����� the SLDNF calculus is based on the idea that
a rule of the program is �applicable� to a literal L when the head of the rule is L�
For schematic programs� the de�nition of applicability is di�erent� About a schematic
rule we say that it is applicable to a schematic literal L if the head H of the rule has
a common instance with L� that is� if there exist substitutions �� and �� such that
H�� � L��� For example� the last rule of 
��� is applicable to r
x��

The �application� of a schematic rule to a schematic literal L is achieved by unifying
L with the head of the rule� Prior to the uni�cation� the variables in the rule are
renamed so that they do not appear in the goal under consideration� For instance�
before the last rule of 
��� is applied to r
x�� it can be replaced by

r
y�	 p
x�� y��not q
x��� 
���

We assume that a speci�c variable renaming procedure vr is chosen� For every
schematic rule R and every �nite set V of variables� an invertible
 substitution

�For the de�nitions related to the notion of a substitution� the reader is referred to the textbook by
Fitting 
������ Sections ��	 and 
�	�

�A substitution � is invertible if there is a substitution �
�� such that both ��

�� and �
��

� equal the
identity substitution ��

�	



vr
R�V � is selected such that the rule R � vr
R� V � does not contain variables from
V � For instance� if R is the last rule of 
��� then one possible choice for vr
R� fxg� is
fx	x�� x�	xg� the result of applying this substitution to R is 
����

Bymgu
L�� L�� we denote a most general uni�er of schematic literals L� and L�� For
any goal G� vars
G� stands for the set of variables occurring in G� For any substitution
� and any set V of variables� � j V stands for the restriction of � to V �

x
� j V � �

�
x�� if x � V �
x� otherwise�

The SLDNF calculus for a schematic program ! consists of the axiom

j� � � 


and the following inference rules�


SP �
j� 
G �B��� � �

j� G � fLg � �� j vars
G � fLg�

if H 	 B is a rule of ! applicable to L�
where � � vr
H 	 B� vars
G � fLg�� and � � mgu
L�H��


FP �
�j 
G �B��� for all rules H 	 B of ! applicable to L

�jG � fLg

where � � vr
H 	 B� vars
G � fLg�� and � � mgu
L�H��


SN�
j� G � � �j fLg
j� G � fnot Lg � �

if L is ground


FN�
j� fLg � 


�jG � fnot Lg
if L is ground

The following comments on the inference rule 
SP � may be helpful�
	� The variable renaming � is selected in such a way that the schematic rule obtained

from H 	 B by the renaming� that is�

H�	 B�� 
���

does not have common variables with the goal G � fLg�

� The substitution � uni�es L with the head H� of 
���� These two literals are

indeed uni�able because they have a common instance 
H 	 B is applicable to L� and
� is invertible� and have no common variables�

�� The premise of 
SP � can be thought of as a symbolic representation of the set
of ground instances of


G �B�����

�




this goal can be written as
G�� �B����

Similarly� the conclusion of 
SP � represents the set of ground instances of


G � fLg����

by the choice of �� this goal can be written as

G�� � fH���g�

We see that the bottom�up application of 
SP � amounts to replacing the head of the
instance

H��� 	 B���

of 
��� with its body�
�� In the conclusion of 
SP �� the substitution �� is restricted to the variables

occurring in the goal G � fLg� Without this� the conclusion might be not in the class
of derivable expressions of this calculus�

Note that in 
SN� and 
FN� the literal L is required to be ground� It is clear that
any goal of the form fnot Lg� where L is nonground� neither succeeds nor fails�

Here is a derivation in the SLDNF calculus for 
����


FP �
j� � � 
 �j fq
a�g


SN�
j� fnot q
a�g � 



SP �
j� fp
x�� x��not q
x��g � fx	b� x�	ag


SP �
j� fr
x�g � fx	bg

In the �rst application of 
SP ��

H � p
a� b�� B � �� G � fnot q
x��g� L � p
x�� x��
� � 
� � � mgu
p
x�� x�� p
a� b�� � fx	b� x�	ag� � � 
�

�� j vars
G � fLg� � fx	b� x�	ag j fx� x�g � fx	b� x�	ag�

In the second application�

H � r
y�� B � fp
x� y��not q
x�g� G � �� L � r
x��
� � fx	x�� x�	xg� � � mgu
r
x�� r
y�� � fy	xg� � � fx	b� x�	ag�

�� j vars
G � fLg� � fx	b� y	b� x�	ag j fxg � fx	bg�

Problem ���� For the schematic program whose only rule is p
x� x�� �nd a substitution
� such that fp
x� y�g succeeds with c�a�s� ��

The following theorem relates the SLDNF calculus for a schematic program ! to
the SLDNF calculus for Ground 
!��

��



Proposition ���� For any schematic program !� schematic goal G and substitution ��


 if G succeeds relative to ! with c�a�s� � then every ground instance of G� succeeds
relative to Ground 
!��


 ifG fails relative to ! then every ground instance of G fails relative to Ground 
!��

For instance� the derivation above shows that fr
x�g succeeds relative to program

��� with c�a�s� fx	bg� consequently� fr
b�g succeeds relative to the corresponding
ground program�

Problem ����� Find a derivation of j� fr
b�g in the SLDNF calculus for this ground
program�

Using Propositions ��	� and ��	�� we conclude�

Corollary �� For any schematic program ! and schematic goal G� if G succeeds

relative to ! with some c�a�s� then G does not fail relative to !�

Corollary �� For any schematic program !� schematic literal L� and substitution ��


 if fLg succeeds relative to ! with c�a�s� � then every ground instance of L� is a

well�founded consequence of !�


 if ! is consistent and fLg fails relative to ! then every ground instance of L is

unfounded relative to !�

The last corollary expresses the soundness of the SLDNF calculus for consistent
schematic programs�

��� Prolog

Proposition ��	� and the thinning rule 
Section ���� are extended to schematic programs
in a straightforward way�

The process of computing answer substitutions in Prolog can be described as follows�
Prolog attempts to �evaluate� a schematic goal G� that is� to generate a series of
computed answer substitutions for G or to establish that G fails� This is done by
backward chaining� and Prolog performs the evaluation correctly as long as it does not
��ounder� 
see below���

If the given schematic goal G is empty then it succeeds with the c�a�s� 
� and the
process terminates� Otherwise� the �rst step is to select a singleton subgoal in G� If
the selected subgoal does not contain negation as failure� so that G is represented as
G� � fLg� then Prolog takes� one by one� the schematic rules H 	 B applicable to L�
computes for each of them � � vr
H 	 B� vars
G� � fLg�� and � � mgu
L�H��� and
starts evaluating 
G� �B���� Whenever an expression of the form j� 
G� �B��� � � is

�Floundering is one of two reasons why a Prolog system can evaluate a schematic goal incorrectly�
The second reason is that� for the sake of e�ciency� most Prolog implementations omit the occurs check
from the uni�cation algorithm�

��



derived� a new c�a�s� for G is produced by one application of 
SP �� If �j 
G��B��� has
been derived for each schematic rule applicable to L then the failure of G is concluded
by one application of 
FP ��

If the selected subgoal contains negation as failure� so that G is represented as
G� � fnot Lg� then what happens next depends on whether or not L is ground� If it is
then Prolog starts evaluating the goal fLg� If it succeeds then� since L is ground� the
only possible c�a�s� for this goal is 
� and �jG can be derived by 
FN�� If it fails then
Prolog starts evaluating G�� Whenever an expression of the form j� G� � � is derived�
a new c�a�s� for G is produced by one application of 
SN�� If �jG� is derived then the
failure of G is concluded by one application of 
T �� Finally� if L is nonground then
Prolog ��ounders�� It is not capable of continuing the evaluation process correctly�

As an example� consider the Prolog evaluation of the goal fr
x�g for program 
����
The process begins with the partial derivation

�� fr
x�g � ��

where the symbol �� represents an unknown answer substitution� it will be computed
later if �� turns out to represent success� On the �rst step� L � r
x� and G� � �� The
only rule of 
��� applicable to L is the last one�

H � r
y�� B � fp
x� y��not q
x�g�

We compute
� � fx	x�� x�	xg� � � fy	xg�


G� �B��� � fp
x�� x��not q
x��g�

and arrive at the partial derivation

�� fp
x�� x��not q
x��g � ��

�� fr
x�g � ��

with the following equation relating the unknown substitutions �� and ���

�� � fy	xg�� j fxg� 
���

Now L � p
x�� x� and G� � fnot q
x��g� The only rule of 
��� applicable to L is the
�rst one�

H � p
a� b�� B � ��

We compute
� � 
� � � fx	b� x�	ag�

G� �B��� � fnot q
a�g�

and arrive at the partial derivation

�� fnot q
a�g � ��

�� fp
x�� x��not q
x��g � ��

�� fr
x�g � ��

��



with the additional equation

�� � fx	b� x�	ag�� j fx� x�g�

After that� we generate the �gure

�� fq
a�g � 


�� fnot q
a�g � ��

�� fp
x�� x��not q
x��g � ��

�� fr
x�g � ��

Since no rule in 
��� is applicable to q
a�� the goal fq
a�g fails�


FP �
�j fq
a�g

�� fnot q
a�g � ��

�� fp
x�� x��not q
x��g � ��

�� fr
x�g � ��

The next step takes us to the �gure


FP �
�� � � �
 �j fq
a�g

�� fnot q
a�g � ��

�� fp
x�� x��not q
x��g � ��

�� fr
x�g � ��

with the equation
�� � �
�

Finally we observe that � succeeds with c�a�s� 
 and arrive at the derivation


FP �
j� � � �
 �j fq
a�g


SN�
j� fnot q
a�g � ��


SP �
j� fp
x�� x��not q
x��g � ��


SP �
j� fr
x�g � ��

��



and the equation
�
 � 
�

The values of ��� � � � � �
 can be determined from the equations given above� Having
done this� we will see that this is the same derivation as the one given in Section ����

In this example� Prolog has computed only one answer substitution for the given
goal� To see how it can produce several answer substitutions� consider the following
enhancement of 
����

p
a� b��
p
x� c�	 p
x� b��
q
b��
r
y�	 p
x� y��not q
x��

The process will proceed as described above� but it will not stop here� because the new
program has a second rule applicable to p
x�� x�� We go back to the step after equation

��� and compute�

L � p
x�� x�� G
� � fnot q
x��g�

H � p
x� c�� B � fp
x� b�g�
� � fx	x�� x�	xg� � � fx	c� x�	x�g�

G� �B��� � fp
x�� b��not q
x��g�

This leads to the partial derivation

�� fp
x�� b��not q
x��g � ���

�� fp
x�� x��not q
x��g � ��

�� fr
x�g � ��

with the additional equation

�� � fx	c� x�	x�g�
�
� j fx� x�g�

This is a path to a new chain of partial derivations and to a second computed answer
substitution�

Problem ����� Find these partial derivations and the substitution�

Problem ����� Describe the work of Prolog on the program obtained from 
��� by
dropping the second rule� and the same goal as above�

� Disjunctive Programs and Default Theories

In this section� the class of programs with negation as failure is extended in two di�erent
directions� In a �disjunctive program�� the head of a rule� like the body� is allowed
to be a �nite set of rule elements� rather than a single literal� In a �default theory��
arbitrary propositional formulas can be used in place of literals�

��



��� Disjunctive Programs

A disjunctive rule is an ordered pair Head 	 Body � where Head and Body are �nite
sets of rule elements� A rule L 	 Body in the sense of Section ��	 will be identi�ed
with the disjunctive rule fLg 	 Body � A disjunctive rule can be represented in the
form

HPos � not
HNeg�	 BPos � not
BNeg� 
���

for some �nite sets of literals HPos � HNeg� BPos � BNeg � The rule with the head
fL�� � � � � Lk�not Lk��� � � � �not Llg and the body fLl��� � � � � Lm�not Lm��� � � � �not Lng
will be also written as

L� j � � � j Lk j not Lk�� j � � � j not Ll 	 Ll��� � � � � Lm�not Lm��� � � � �not Ln 
���


j reads �or���
A disjunctive program is a set of disjunctive rules� For instance� here is a disjunctive

program without negation as failure�

p j q 	�
�r	 p�


�	�

In the next example� the head of one of the disjunctive rules is empty� such rules are
called constraints�

p	 not q�
q 	 not p�
	 p�


�
�

A disjunctive rule may contain the negation as failure symbol in the head� as� for
instance� the second rule of the program

q 	 p�
p j not p	 �


���

The notion of an answer set is de�ned for disjunctive programs in two steps� First
we give the de�nition for disjunctive programs without negation as failure� such as 
�	��
Then it is extended to the general case by means of a process similar to the one used
in Section ��	�

Let ! be a disjunctive program without negation as failure� About a set X of
literals we say that it is closed under ! if� for every disjunctive rule Head 	 Body in
!� Head � X �� � whenever Body � X� We say that X is an answer set for ! if it
is a minimal 
relative to set inclusion� set of literals that is both closed under ! and
logically closed�

For instance� the answer sets for program 
�	� are fp��rg and fqg�
The reduct of a disjunctive program ! relative to a set of literalsX is the disjunctive

program without negation as failure obtained from ! by


 deleting each disjunctive rule 
��� such that HNeg �� X or BNeg �X �� �� and

��




 replacing each remaining disjunctive rule 
��� by HPos 	 BPos �

This disjunctive program will be denoted by !X � We say that X is an answer set for
! if X is an answer set for !X � A consequence of a disjunctive program is a literal
that belongs to all its answer sets�

When applied to a program in the sense of Section ��	� these de�nitions are clearly
equivalent to the ones given there�

Problem ���� Find the answer sets for the disjunctive program

p j q 	�
�p	 not p�
�q	 not q�
r	 p�
r	 q�

It is easy to check that fqg is the only answer set for program 
�
�� The e�ect of
adding the constraint 	 p to the �rst two rules of 
�
� is to eliminate the answer set
that includes p� This is an instance of the general fact stated below as Proposition ��	�

About a set X of literals we say that it violates a constraint

	 Pos � not
Neg�

if Pos � X and X �Neg � �� Otherwise� X satis�es the constraint�

Proposition ���� Let ! be a disjunctive program� and C a set of constraints� A set of

literals is an answer set for !�C i
 it is an answer set for ! and satis�es all constraints

in C�

Program 
��� has two answer sets� � and fp� qg� This example shows that the
assertion of Proposition ��	 does not generally hold for disjunctive programs with the
negation as failure symbol in the head�

��� Default Logic

A default is an expression of the form

F not G� � � � not Gn
H


���

where F�G�� � � � � Gn�H are propositional formulas� n 
 �� We will drop F if it equals
true� A default of the form

H

will be identi�ed with the formula H�
A default theory is a set of defaults� For instance� here is a default theory�

�
p � q�

not p

�p

�
� 
���

��



A rule
L� 	 L�� � � � � Lm�not Lm��� � � � �not Ln

will be identi�ed with the default

L� � � � � � Lm not Lm�� � � � not Ln
L�

�

According to this convention� programs in the sense of Section � are default theories of
a special syntactic form�

Our syntax of defaults stresses their similarity to rules in logic programming and
is somewhat di�erent from the standard one� Traditionally� defaults are de�ned as
expressions of the form

F � M G� � � � M Gn
H

�

where M expresses �consistency�� or simply

F � G� � � � Gn
H

�

In our notation� this expression corresponds to

F not �G� � � � not �Gn
H

�

Let T be a default theory� The function  T from sets of formulas to sets of formulas
is de�ned as follows� For any set of formulas X�  TX is the smallest set of formulas Y
such that


 for every default 
��� in T � if F � Y and G�� � � � � Gn �� X then H � Y �


 Y is logically closed 
in the sense of propositional logic��

A set of X of formulas is an extension for T if  TX � X� A consequence of a default
theory is a formula that belongs to all its extensions�

If� for example� T is 
��� then� for any set of formulas X�

 TX �

�
Closure
fp � qg�� if p � X�
Closure
fp � q��pg�� otherwise�

where Closure denotes the deductive closure in the sense of propositional logic� It is
clear that the only extension for 
��� is Closure
fp� q��pg�� that is� Closure
f�p� qg��
The consequences of this theory are the consequences of �p and q in the sense of
propositional logic�

Problem ���� Find the extensions for the default theory�
p � q�

not p

�p
�
not q

�q

�
�

Default logic is an extension of propositional logic� If T is a set of formulas then
the only extension for T is Closure
T �� If� on the other hand� T is a program then
there is a simple one�to�one correspondence between its answer sets and its extensions
in the sense of default logic�

��



Proposition ���� For any program !�


 if X is an answer set for ! then Closure
X� is an extension for !�


 every extension for ! has the form Closure
X� for exactly one answer set X
for !�
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logic introduced by Moore �	�����

The monographs �Lloyd� 	���� and �Lobo et al�� 	��
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celebrating the tenth anniversary of the journal� contain� among others� three surveys
closely related to this one�by Apt and Bol �	����� by Baral and Gelfond �	����� and
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Appendix� Monotone Functions

Consider an arbitrary set " and a function T from subsets of " to subsets of "� A
subset X of " is a pre��xpoint of T if TX � X� X is a post��xpoint of T if X � TX�
Thus X is a �xpoint of T 
TX � X� i� it is both a pre��xpoint and post��xpoint of T �

We say that T is monotone if� for any subsets X�Y of "� TX � TY whenever
X � Y � The following fact is known as the Knaster�Tarski theorem �Tarski� 	�����

Proposition A��� Every monotone function has


 a least �xpoint� that is also its least pre��xpoint� and


 a greatest �xpoint� that is also its greatest post��xpoint�

These �xpoints can be approached 
but not necessarily reached� by iterating T �

Proposition A��� For every monotone function T �


 the sequence 
T n��n�� is increasing �that is� every element of this sequence is a

subset of the next one�� and its union a subset of the least �xpoint of T �


 the sequence 
T n"�n�� is decreasing �that is� every element of this sequence is a

superset of the next one�� and its intersection is a superset of the greatest �xpoint

of T �

Problem A��� Let " be the set of natural numbers� 
a� Give an example of a
monotone function T such that all sets T n� 
n 
 �� are di�erent from each other� and
the union of these sets is a �xpoint of T � 
b� Give an example of a monotone function
T such that all sets T n" 
n 
 �� are di�erent from each other� and the intersection of
these sets is a �xpoint of T �

Problem A��� Let " be the set of natural numbers� 
a� Give an example of a
monotone function T such that the union of the sets T n� 
n 
 �� is not a �xpoint of
T � 
b� Give an example of a monotone function T such that the intersection of the sets
T n" 
n 
 �� is not a �xpoint of T �

If " is �nite then the least and the greatest �xpoints of a monotone function T can
be computed by iterating T a �nite number of times� For all su�ciently large n� T n�
equals the least �xpoint of T � and T n" equals the greatest �xpoint of T �

A function T from subsets of " to subsets of " is anti�monotone if� for any subsets
X�Y of "� TY � TX whenever X � Y � It is clear that� for any anti�monotone function
T � T � is monotone�

��



Proposition A��� Let T be an anti�monotone function� and let X� and X� be the

least and the greatest �xpoints of T �� Then


 TX� � X�� TX� � X��


 for any �xpoint X of T � X� � X � X��

Corollary� For any anti�monotone function T � if X is the only �xpoint of T � then X
is the only �xpoint of T �

If " is �nite then� for any anti�monotone function T � the least and the greatest
�xpoints of T � can be computed by iterating T a �nite number of times� as follows�
Compute the sets T n� 
n � �� 	� � � �� until a value of n is found for which T n� � T n����
Then one of the sets T n�� T n��� is the least �xpoint of T �� and the other is the greatest
�xpoint of T �� depending on whether n is even or odd� Alternatively� these �xpoints
can be found by iterating T on "�
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