
Fixpoint
Approach to the
Theory of
Computation
Zohar Manna and Jean Vuillemin
Stanford University

Following the fixpoint theory of Scott, the semantics
of computer programs are defined in terms of the least
fixpoints of recursive programs. This allows not
only the justification of all existing verification
techniques, but also their extension to the handling, in
a uniform manner of various properties of computer
programs, including correctness, termination, and
equivalence.

Key Words and Phrases: verification techniques,
semantics of programming languages, least fixpoints,
recursive programs, computational induction

CR Categories: 5.23, 5.24

Copyright @ 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

The research reported here was supported by the Advanced
Research Projects Agency of the Office of the Secretary of Defense
under contract SD-183. Authors' address: Computer Science De-
partment, Stanford University, Stanford, CA 94305.

[$28

Introduction

Substantial progress has recently been made in un-
derstanding the mathematical semantics of program-
ming languages as a result of Scott 's fixpoint theory.
Our main purpose in this paper is to introduce the
reader to some applications of this theory as a practical
tool for proving properties of programs.

The paper consists of two parts. In Part I the notion
of a recursive program and its associated (unique) least
fixpoint function are introduced. We describe the com-
putational induction method, a powerful tool for prov-
ing properties of the least fixpoint of a recursive pro-
gram. We then illustrate how one could describe the
semantics of an ALGOL-like program P by " t rans la t ing"
it into a recursive program P ' such that the partial func-
tion computed by P is identical to the least fixpoint of
P' . Works in this area include: [McCarthy, 1963a,
1963b; Landin, 1965; Strachey, 1966; Morris, 1968;

Beki~, 1969; Park, 1969; deBakker and Scott, 1969;
Scott, 1970; Scott and Strachey, 1971; Manna, Ness, and
Vuillemin, 1972; Milner, 1972; Weyhrauch and Milner,
1972].

In Part 2 of the paper we illustrate some of the
advantages of the fixpoint approach to program seman-
tics. First, we justify the inductive assertion methods of
[Floyd, 1967 and Hoare, 1969, 1971]. Other verification
methods such as recursion induction [McCarthy, 1963a,
1963b], structural induction [Burstall, 1969], fixpoint
induction [Park, 1969; Cooper, 1971], and the predicate
calculus approach [Manna, 1969; Manna and Pnueli,
1970] can be justified in much the same way. Secondly,
we emphasize that the fixpoint approach suggests a
natural method for proving properties of programs:
given a program P, we can translate it into the corres-
ponding recursive program P' , and then prove the
desired properties for the least fixpoint of P ' by corn-

Communications July 1972
of Volume 15
the ACM Number 7

putational induction. In contrast to other existing
methods, this approach gives a uniform way of express-
ing and proving different properties, including correct-
ness, termination, and equivalence. This makes it very
appealing for machine implementation [Milner, 1972].

Warning. The reader should be aware that some of
the results presented in this paper hold only under cer-
tain restrictions which are ignored in this informal
presentation.

Part 1. The Fixpoint Approach to Program Semantics

1.1 Recursive Programs
A recursive program is a LisP-like definition of the

form

F (x) ~ r[F](x) ,

where r[F](x) is a composition of base functions and
the function variable F, applied to the individual vari-
ables x = (x, y, z, ...). The following, for example, is a
recursive program over the integers

Po: F(x, y) ~ i f x = y then y q- 1
elseF(x, F(x -- 1, y -b 1)).

We allow our base functions to be partial, i.e. they
may be undefined for some arguments. This is quite
natural, since they represent the result of some computa-
tion which may, in general, give results for some inputs
and run indefinitely for others. We include as limiting
cases the partial functions defined for all arguments,
called total functions, as well as the partial function
undefined for all arguments.

Let us consider now the following functions:

f l (x , y) : i f x = ythen y + 1 else x + 1,
f2(x, y) : i f x > y then x + 1 else y - 1, and
f 3 (x , y) : i f (x > y) /~ (x - - y even) then x + 1

else undefined.

These functions have an interesting common property.
For each i (1 _< i _< 3), if we replace all occurrences
of F in the program P0 byf~, the left-hand side and the
right-hand side of the symbol ~ yield identical partial
functions, i.e.

f i (x , y) = i f x -- y then y - k 1
elsef~(x, f i (x - 1, y - k 1)).

We say that the functions f l , f2 , and f3 are fixpoints of
the recursive program P0 • There are two different ways
to extend the regular equality relation. The natural ex-
tension, denoted by = , is undefined whenever at least
one of its arguments is undefined. The other one, de-
noted by ----, is true if both arguments are undefined, and
false if exactly one of them is undefined. Consequently,
the funct ion~(x, y) : x -F l, is not a fixpoint of P0 when
y is undefined.

Among the three functions, .~ has one important
special property: for any (x, y) such that f~(x, y) is
defined, i.e. (x > y) /X (x -- y even), both./l(X, y)
and J~ (x, y) are also defined and have the same value
asf~ (x, y). We say that J~ is "less defined than or equal
to" f l and f2, and denote this by f3 c ~ and J~ ___ j~.
It can be shown that f~. has this property not only with
respect t o f l and f2 but with respect to all fixpoints of the
recursive program P0. Moreover, ~ (x , y) is the only
function having this property;J~ is therefore said to be
the least (defned) fixpoint of Po.

One of the most important results related to this
topic is due to Kleene, who showed that every recursive
program P has a unique least fixpoint (denoted by fp).
(See [Kleene, 1952].)

In discussing our recursive programs, the key
problem is: what is the partial function f defined by a
recursive program P? There are two viewpoints: (a)
Fixpoint approach: Let it be the unique least f ixpointfp.
(b) Computational approach: Let it be the computed
function Cp for some given computation rule C (such
as "call by name" or "call by value").

We now come to an interesting point: all the theory
for proving properties of recursive programs is based
on the assumption that the function defined by a recur-
sive program is exactly the least fixpoint f e , that is,
the fixpoint approach is adopted. Unfortunately, many
programming languages use implementations of recur-
sion (such as "call by value"!) which do not necessarily
lead to the least fixpoint [Morris, 1968]. 1

Let us consider, for example, the following recursive
program over the integers

P1 : F(x, y) ~ i f x = 0 then I else F(x -- 1, F(x, y)).

The least fixpointfel can be shown to be

fe, (x, y) : i f x >_ 0 then 1 else undefined.

However, the computed function Cel, where C is
"call by value," turns out to be

Cp~ (x, y) : i f x = 0 then 1 else undefined.

Thus Ce 1 is properly less defined than fp~--e.g.
C~ (1, 0) is undefinedwhilefp~ (1, 0) = 1.

There are two alternative ways to view this problem.
(1) Existing computer languages should be modified,
and language designers and implementors should seek
computation rules which always lead to the least fix-
point. "Call by name" is one such computation rule,
but unfortunately it often leads to very inefficient com-
putations. An efficient computation rule which always
leads to the least fixpoint can be obtained by modifying
"call by value" so that the evaluation of the arguments
of a procedure is delayed as long as possible [Vuillemin,
1972]. (2) Theoreticians are wasting their time by

It can be shown in general that for every recursive program P
and any computation rule C, Cp must be less defined than or
equal to fp, i.e. C~ C fp [Cadiou, 1972].

529 Communications July 1972
of Volume 15
the ACM Number 7

developing fixpoint methods for proving properties of
programs which do not compute fixpoints. They should
instead concentrate their efforts on developing direct
methods for proving properties of programs as they
are actually executed.

We shall indicate in Part 2 of this paper how the
apparent conflict between these views can be resolved
by a suitable choice of the semantic definition of the
programming language.

1.2 The Computational Induction Method
The main practical reason for suggesting the fix-

point approach is the existence of a very powerful tool,
the computational induction method, for proving prop-
erties of the least fixpointfp of a given recursive program
P. The idea of the method is essentially to use an in-
duction on the level of recurs!on.

Let us consider, for example, the recursive program

P2: F (x) ~ i f x = 0 then 1 e l s e x . F (x -- 1)

over the natural numbers. The least fixpoint fp~ (x) of
this recursive program is the factorial function x!.

Let us denote b y f ~ (x) the partial function indicating
the " information" we have after the ith level of re-
cursion. That is,

f ° (x) is undefined for all x;
f l (x) is i f x = 0 then 1 else x . f ° (x - 1),

i.e. i f x = 0 then 1 else undefined;
2 (X) f is i f x = 0 then 1 else x . f a (x - 1),

i.e. i f x = 0 then 1
else x . (i f x - 1 = 0 then 1

else undefined),
or in short,

i f x = 0 k~ x = 1 then 1 else undefined;
etc.

In general, for every i, i > 1,

f ~ (x) is i f x = 0 then 1 else x . f~ -~ (x - 1),

which is

~,(fe), we show that ¢(f~) holds for all i > 0, and that
remains true in the limit; therefore we may conclude

that ~o (l imi~ {fi}), i.e. ¢ (fp), holds.
Note that it is not true in general that ¢ remains

true in the limit. For example, for the recursive pro-
gram P2 introduced above, f t ' (x) is the nontotal func-
tion i f x < i then x! else undefined, while l i m i ~ {f~},
i.e., fe2, is the total function x!. Thus for ~o(f) being
" f i s not total," we have that ~o('f ~) holds for all i >_ 0,
while ~ (l i m ~ {.f~}) does not hold. However, the limit
property holds of a rather large class of ~ (called
"admissible predicates"--see [Manna, Ness, and
Vuillemin, 1972]); in particular, all the predicates that
we use later have this property.

There are two well-known ways to prove that ~ (f~)
holds for all i _> 0, the rules for simple and complete
induction on the level of recursion.

(a) Simple induction :
I f ~ (f °) holds and Vi[~o(f ~) ~ ~,(f~+a)] holds,
then ~ (fv) holds.

(b) Complete induction:
I f Vi{[(Vj such that j < i) , ;(ff)] ~ ~p(fi)} holds,a
then ~ (f e) holds.

The simple induction rule is essentially the "u-rule"
suggested by [deBakker and Scott, 1969], while the com-
plete induction rule is the "truncation induction rule"
of [Morris, 1971]. Scott actually suggested the more
elegant rule:

I f ~(~2) holds and Vf[~o(f) ~ ~,(r[f])] holds,
then ¢(f lO holds,

which does not assume any knowledge of the integers
in its formulation. These rules generalize easily to sys-
tems of mutually recursive definitions.

Example. Consider the recursive programs

Pa: F(x , y, z) ~ i f x = 0 then y
else F (x -- I, y + z, z)

and

i f x < i then x! else undefined.

This sequence of functions has a limit which is exactly
the least fixpoint of the recursive program, that is,

lim {f ' (x)} = x/.

This will in fact be the case for any recursive program
P: if P is a recursive program of the form
F (x) ~ r[F](x), and f i (x) is defined by

f0 (x) is f~ (undefined for all x) , and
f~(x) is r [f ' - l] (x) for i > 1, 2

then

lim {f ' (x) } --- fv (x).
i-~Qo

P4: G(x , y) ~ i f x = O then y
e l s e G (x - - 1, y + 2 x - - 1).

We would like to prove, using computational induction,

f ~ (x, 0, x) = gp, (x, 0) for any natural number x.

(Both functions compute the square of x.)

2 rift-l] is the result of replacing all occurrences of F in r[F]
by ff-k

a Note that this includes implicitly the need to prove ~o(fo),
since for i = 0 there is no j such that j < i.

This suggests an induction rule for proving properties
of f e : To show that some property ~ holds for f~,, i.e.

530 Communications July 1972
of Volume 15
the ACM Number 7

For this purpose, we shall prove a stronger result
than the desired one by simple computational induc-
tion. Proving a stronger result often simplifies proofs
by induction, since it allows the use of a stronger in-
duction hypothesis. So, using

~o(f, g) : V x V y [f (y , x (x - y) , x) - g (y , x ~ - y2)],

we try to show that

~(f~3, gP4) : VxVY[f~3(Y, x (x - y) , x)
_-- ge,(Y, x 2 _ y2)]

holds. The desired result then follows by choosing
x = y. The induction proceeds in two steps:

a. ¢ (f 0 , gO),

i.e. V x V y [f ° (y, x (x - y) , x) =- gO(y, x 2 _ y2)].
Trivial, since VxVy[undef ined - undefined].

b. Vi[~o(f i, g~) ~ ~(ju+1, g~+1)].
We assume V x V y [f ~ (y , x (x - y) , x) =- g ' (y , x 2 - y2)]
and prove V x V y [f ~+1 (y, x (x - y) , x)

=_ g~+l(y, x 2 _ y2)].

f i+l(y, x (x - y) , x)
=- i f y = 0 then x (x -- y)

e l s e f i (y -- 1, x (x -- y) + x, x)
=--- i f y = O then x 2

e l s e f i (y - - 1, x (x - - (y - - 1)) , x)
= i f y = O t h e n x 2

else g i (y - - 1, x 2 - (y - - 1) 9)

by the induction hypothesis
=- i f y = 0 then x ~ - y2

else g~(y - 1, (x 2 - y2) + 2y - 1)
=- gi+1 (y, x 2 -- y2).

1.3 S e m a n t i c s o f A l g o l - l i k e P r o g r a m s
Our purpose in this section is to illustrate how one

can describe the semantics of an ALGOL-like program
P by translating it into a recursive program P' such
that the partial function computed by P is identical to
the least fixpoint of P'. The features of ALGOL we con-
sider are very simple indeed, but there is no theoretical
difficulty in extending them.

The translation is defined blockwise: to each block
B (or elementary statement) we associate a partial
function fn describing the effect of the block (or state-
ment) on the values of the variables. For example,

b e g i n x : = x + 1 ;y := y + 1 end,

will be represented by the function

f (x , y) --= (x + 1, y + 1).

Functions are then combined to represent the whole
program using the rule:

f~1 ;~2 (x) - f R 2 (A , (x)) .

This definition is unambiguous, since composition of
partial functions is associative, i.e.

f B s (f s , ; B2(x)) -= fB1; B2; B3(x) ~ f ~ ; B8 (fB, (x)) .

All that remains to be done is to describe the partial
function associated with each elementary statement of
the language. For simplicity, we shall first consider
only a "f lowchartable" subset of a language, with no
goto statements or procedure calls. We shall also ignore
the problem of declarations.

1. Assignment statements:

if B is x; := E(x) where E is an expression,
fB(x) is (xl, " '" , xi-1, E(x) , X i + l , " ' " , Xn).

2. Conditional statements:

i f B i s i f p (x) thenBx,
f~(x) is i f p (x) then fB l (X) else x,

and

i f B is i f p (x) then B1 else B2,
fB(x) is i f p (x) then f B l (x) else fB~(x) .

3. Iterative statements:

if B is while p (x) do B1,
f8 (x) is the least fixpoint of the recursive program

F (x) ~ i f p (x) then F(fBl (x)) else x.

Example. Let us consider the following program
for computing the greatest natural number x smaller
than or equal t o v ' a , i . e . x 2_< a < (x + 1)2, whe rea
is any natural number. (The computation method is
based on the fact that 1 + 3 + 5 + . . . + (2n- - 1) =
n 2 for every n > 0.)

Ps: begin integer x, y, z;
x : = O ; y : = z := 1;
while y < a do

begin x := x -4- 1;
z : = z + 2 ;
y := y-}-z;

end;
end.

The partial function computed by P5 is identical to
the least fixpoint of P~, where

P j : Fo(a) ~ F(a, 0, 1, 1)
F (a , x , y , z) ~ i f y <_ a

then F(a, x -4- 1, y + z + 2, z -q- 2)
else (a, x, y, z) .

4. Goto statements: There has been much discussion
(see, for example [Dijkstra, 1968; Knuth and Floyd
1971; Ashcroft and Manna, 1971]) about the usefulness
of goto statements: they tend to make programs diffi-

531 Communications July 1972
of Volume 15
the ACM Number 7

cult to understand and debug, and one might prefer to
use while or for statements instead. Without entering
further into this controversy, we shall see that the se-
mantics of goto statements is quite complex. In par-
ticular, it may lead to systems of mutually recursive
definitions, and (not too surprisingly) it is indeed
harder to prove properties of programs with goto state-
ments. We consider two simple cases.

I f we have a block of the form

begin . . - ; L: B ~ ; . . . ; B~-j; goto L; B~+~ ; • • • ;
B. end,

then we define

fgoto~;Bi+l; ...; B~(x) to be the least fixpoint of the
recursive program Fz (x) ~fB~;...;B~(X).

If we have a block of the form

b e g i n . - . ; goto L; B ~ ; . . . ; Bi-1; L: Bi; Bi+t;
• . . ; B~ end,

then we define

f~,oto L;B1;...;B, (X) to be the least fixpoint of the recursive
program F~(x) ~fB~;...;B,(X).

Note that we have revised our rule of composition,
since f . ;A,(x) -- fB ' (fB(x)) is not valid when B is
a goto statement. Similarly, if we wish to allow goto's
which jump out of iterative statements or branches of
conditional statements, then we must change their se-
mantic definition accordingly.

Example. Let us consider another version of Ps,
using only the operations successor and predecessor.

PB: begin integer x, y, z;
x : = 0 ; y : = z : = 1;
L: i fy_<athen

begin integer t;
x : = x + l ;
z : = z + l ;
t : = z + l ;
M:i f t >0 then
begin y := y + 1;

t : = t - - 1 ;
goto M;

end;
z := z + 1; goto L;

end;
end.

The partial function computed by P6 is identical
to the least fixpoint of P6' where

P6': F o (a) ~ F L (a , 0, 1, 1),
FL(a, x , y , z) ~ i f y < a

t h e n F ~ (a , x + 1, y , z + 1, z + 2)
else (a, x, y, z) ,

F~(a, x, y, z, t) ~ i f t > 0
then FM(a, x, y + 1, z, t -- 1)
else FL (a, x, y, z + 1).

Let us now define the semantics of simple proce-
dures without parameters. We shall not discuss problems
such as "side effects," parameter passing, or the pro-
cedure copy-rule for call by name.

5. Procedures:
a. For the nonrecursive procedure

procedure P; B

(where P is the procedure name and B is its body),
we define

fcall P (X) to be fB (x).

b. For the recursive procedure

procedure P; B[P],

we define

fc~n p (x) to be the least fixpoint of the recursive pro-
gram F(x) ~ f B t v l (x)

where occurrences of call P will be replaced by F in
the semantic definition fntel •

6. An answer to the problem o f "call by value": Our
semantic definition of recursive procedures assumes
that the implementation of recursion in the language
always leads to the least fixpoint. If this is not the case,
we must change our semantic definition: to every pro-
gram P we associate a recursive program P' such that
the least fixpoint of P' will always be identical to the
partial function computed by P. Consider, for example,
the program

integer procedure P (integer x, y) ;
P := i f x = 0 then 1 else P (x -- 1, P (x , y)) ;

If the implementation is "call by name," its semantics
will be

fcan v (x, y) is the least fixpoint of

F(x, y) ~ i f x = 0 then 1 else F (x -- 1, F(x, y)).

However, if the implementation is "call by value," its
semantics will be

fcan ~ (x, y) is the least fixpoint of

F(x, y) ~ i f (x = 0) / k def(y) then 1
else F (x -- 1, F(x, y)),

where the (computable) predicate def(y) is true when-
ever y is defined, and undefined otherwise.

Part 2. Application to the Verification Problem

Our purpose in the second part of the paper is to
illustrate some of the advantages of the fixpoint ap-
proach to program semantics.

532 Communications July 1972
of Volume 15
the ACM Number 7

2.1 Justification of the Inductive Assertions Method
The most widely used method for proving proper-

ties of "flowchart programs" is presently the inductive
assertions method, suggested in [Floyd, 1967 and Naur,
1966]. We shall illustrate the method on the simple pro-
gram P5 above. To clarify our discussion we shall de-
scribe the program as a flowchart:

l i i i

[z ~ z+2 I

I
We wish to show that this flowchart program, when-
ever it terminates, computes the greatest natural num-
ber smaller than or equal to x/a, i.e. that x 2 _< a <
(x + 1)2 for any natural number a.

To do this we associate a predicate Q(a, x, y, z),
called an inductive assertion, with the point labelled a
in the program, and show that Q must be true for the
values of the variables (a, x, y, z) whenever execution
of the program reaches point a. Thus, we must show:
(a) that if we start execution with a > 0, then the as-
sertion holds when point a is first reached, i.e. that
Q(a, 0, 1, 1) holds; and (b) that the assertion remains
true when one goes around the loop from a to a, i.e.
that (y < a)/~ Q(a, x, y, z) implies Q (a, x + 1, y -t- z q- 2,
z q- 2). To prove the desired result we finally show
(c) that x 2 < a < (x -k- 1)2 follows from the assertion
Q(a, x, y, z) when the program terminates, i.e. that
(y > a) /k Q (a , x , y , z) impliesx 2 < a < (x-{- 1) 2.

To verify the program, we take

Q (a, x, y, z) to be
(x 2__< a) / ~ (y = (x + 1) 2) /~ (z = 2 x + 1).

We can then verify easily that conditions (a), (b), and
(c) above, called the verification conditions, hold.

Hoare 's inductive assertion method [Hoare, 1969,
1971] is actually a generalization of Floyd's method;
he realized that if we wish to apply the method of in-
ductive assertions to prove properties of a large pro-
gram, we undoubtedly have to break the program into
smaller parts, prove what we need about the parts,
and then combine everything together. We will clearly

break the program into pieces in the most convenient
way for the proof, and, since composition of state-
ments is associative, the way in which we group the
statements of the program is irrelevant. For example,
if the given program is of the form

B1 ; B~ ; B3 ; B4,

we can associate the statements in several different
ways, e.g.

((B1 ; B2); ~3); B,,
(B1 ; (B~ ; B3)); B4,
(B1 ; B2); (B3 ; B4), or
BI ; (B2 ; (B3 ; B4)).

Although the programs do not look the same, all of
them yield the same least fixpoint, and therefore they are
equivalent. If we express other verification techniques
using this notation, we find that Floyd and Naur consider
only the first possibility, i.e. grouping statements to the
left, while McCarthy and Manna and Pnueli only con-
sider the last possibility, i.e. grouping statements to the
right. (See [McCarthy, 1963b; Manna and enueli, 1970].)

Following Hoare, we express this idea by writing 4
{R}B{T} to mean that if R(x) holds before executing
the piece of program B and if B terminates, then T(x)
will hold after executing B.

We first apply verification rules to each statement
of the program. Examples of such rules are:
a. Assignment statement rule:

Kin(x) R ~ ~ , implies {R}xi := E(x){S}

K,E(x) where ~ , stands for the result of replacing all occur-
rences of xi in S by E(x) .
b. Conditional statement rule:

{ R /k p} Bt{ T} and { R /k ~ P} B2{ T} implies
{R} if p then B1 else B2 {T}.

c. Iterative statement rule:

{ R A p} B{ Ri implies {R[while p do B{ R A "~ p} .

We then compose pieces of the program until we get
the entire program, using the following rules.

d. Composition rule:

{ R} B~{ S} and { S} B2{ TI implies { R} B~ ; B2{ T}.

e. Consequence rules:

R ~ S and { SI B{ TI implies { R/B { T}, and
!R}B{S} and S ~ T implies {R}B{T}.

4 We prefer this notation to Hoare's R{B}T.

533 Communications July 1972
of Volume 15
the ACM Number 7

Example. A proof of the correctness of the program
P~, given above, could be sketched as follows.

First, we establish, using the assignment statement
rule, the following results:

Since a > 0 ~ R(a, 0, 1, 1), where R(a, x, y, z) is
(x 2_< a) /k (y = (x + 1) 2) /k (z = 2 x + 1) ,wege t

{a_> 0}x := 0 ; y := z := l{R(a, x, y, z)}. (1)

S i n c e R (a , x , y , z) /~ y <_ a D R (a , x + 1, y + z + 2,
z + 2), we get

{R(a, x, y, z) /k y < a}x := x + 1 ; z : = z + 2 ; (2)
y := y + zIR(a, x, y, z)}.

By using the iterative statement rule, we get from (2)

{R(a, x, y, z)} while y _< a do begin x := x + 1;
z := z + 2 ;y := y + zend { R (a, x, y, z) /k y > a}. (3)

We now combine the results of (1) and (3) using the
composition rule to obtain

{a > O}Ps{R(a, x, y, z) A Y > a}. (4)

S i n c e [R (a , x , y , z) /k Y > a] D x ~ <_ a < (x + 1) ~,
we apply the consequence rule and finally get

{a >_ O}P~{x ~ <_ a < (x + 1)~}. (5)
The reader may wonder why those rules are valid.

It is therefore important that Hoare's verification
rules can in fact be proved from the semantics we gave,
just by using computational induction. We shall illus-
trate this point by justifying two of the most powerful
verification rules: the rule for while statements, and the
rule for call of recursive procedures. For this purpose,
we need to relate the notation {RIB{ T I to our fB (x),
the partial function indicating the change of the values
of the variables during the execution of B. {RIB{T}
simply means that whenever R(x) is true, T(fB(x))
is either true (if B terminates) or undefined. We can
express this by the relation

R(x) ==¢. T(fB (x)),

where " ~ " is the usual implication, with the additional
convention that a ~ b is true whenever a or b is un-
defined.

We are ready now to prove the following rules:
a. Rule for while statements. The verification rule for
while statements indicates that if the execution of the
body of the while statement leaves the assertion R in-
variant, R should hold upon termination of the while
statement. More precisely,

{R(x) /~ p (x) / B {R(x)} implies
{R(x)} while p(x) do B {R(x) /~ ~ p (x) / .

We therefore have to prove the following:
THEOREM. Vx[R (x) /~ p (x) ~ R (fa (x))] implies

Vx[R(x) ~ [R(fp(x)) /~ : - -p(fe (x))]] where
P: F(x) ~ i f p (x) then F(f~(x)) else x.

PROOF. By computational induction.
1. 'q" x[R(x) ~ R(f°(x)) /~ :-, p(f°(x))] is clearly
true according to our convention, of ~ , since R (f0 (x))
and :-- p (f0 (x)) are undefined.
2. We assume 'q' x[R(x) ==> R(f i (x)) /~ : - -p (f i (x))]
and show V x[R(x) ~ R(f i+l(x)) /~ :-- p(fi+l(x))] .
By definition o f f i+~ we have

R(f i+l(x)) =-- i f p (x) then R (f f (f ~ (x))) else R(x) ,
and
p(f '+ l (x)) =-- i f p (x) then p(j~(fB(x))) else p(x) .

We distinguish between two cases :5

Case 2 A. p(x) is false. Then R(ff+l(x)) -- R(x)
and p(ff+~(x)) ---- p(x) , so that R(x) ~ R(f i+l (x))
/~ :-~ p (f~+~ (x)) is valid.

Case 2 B . p (x) is true. Then R(f i+ i (x)) -~
R(f~(f~(x))) and p(f~+~(x)) --= p(f f (f~ (x))) . By
the assumption R(x) /k p(x) ~ R(fB(x)) holds,
and since by the induction hypothesis

i
R(f~(x)) ~ R (f i (f ~ (x))) /~ ~ p (f (f~(x))) , we get

i
R(x) ~ R (f (f~(x))) /k ~ p (f ~ (f ~ (x))) . Hence,
R (x) ~ R (fi+l (x)) /k ~" p (fi~l (x)) as desired.
b. Rule .for recursive calls. Let us consider a recursive
procedure

procedure P; B[P],

where P is the name of the procedure and B[P] repre-
sents its body. The verification rule for proving proper-
ties of P is quite similar to computational induction,
although its formulation might look rather paradox-
ical: in order to prove a property of the recursive pro-
cedure P, we are permitted to assume that the desired
property holds for the body B[P] of the procedure!
This can be stated as follows:

Vg [{ R}g I T} implies {R} B[g]{ T}]
implies {R} call P {T}.

In [Hoare, 1971, p. 109] it is stated, "this assumption
of what we want to prove before embarking on the
proof explains well the aura of magic which attends a
programmers's first introduction to recursive program-
ming."

The rule however is easy to justify. We have to
prove the following:

THEOREM.
Vg[Vx[R(x) ~ T(g(x))] implies Vx[R(x) ~ T(fBt~l (x))]]
implies
Vx[R(x) ~ T(f (x))] ,,here P:F(x) ~J~tpj (x).

PROOF. Again by computational induction.
1. Vx[R(x) ~ T(f°(x))] is true, since T (f ° (x)) is un-
defined.
2. We assume Vx[R(x) ~ T(f~(x))] and show
VxlR(x) ~ T(f:+~ (x))]. By the induction hypothesis,
R(x) => T(f~(x)); therefore by the assumption of the
theorem, R(x) ~ T(fB[/q (x)). Thus from the defini-
tion o f f '+~ we get R (x) ~ T (f ~+~ (x)), as desired.

5 A more rigorous treatment would also require checking the
case in which p(x) is undefined.

534 Communications July 1972
of Volume 15
the ACM Number 7

2.2 Translation to Recursive Programs
In the present state of the art of verifying programs,

Hoare ' s method is presumably the most convenient for
proving the correctness of programs. However, its main
drawback is that it can handle only "partial correct-
ness" of programs, i.e. we can only show that the final
results of the programs, if any, satisfy some given
input-output relation. The method does not provide us
any means for proving termination, and seems rather
ill fitted for proving equivalence between programs.

To show, for example, that the partial function de-
fined by a given program P is monotonic increasing, we
have to prove

Vx, y[(x < y) ~ (fe , (x) ~ fe,(Y))] .

Note that it is rather awkward to express such a prop-
erty as an input-output relation.

This is another case where our semantic definition
of the programming language pays off: properties like
termination and equivalence can be handled in exactly
the same way as partial correctness. The idea is quite
simple: To prove some property of a given program P,
translate it to the corresponding recursive program P' ,
and then prove the desired property for f~,,, by compu-
tational induction. In this method we may still associate
the blocks of the program arbitrarily at our convenience.

Termination. To show that fe is total, or in general
that g __c f~ for some function g which is total on the
desired domain, we cannot simply use computat ional
induction choosing ¢ (F) to be g ~ F, as then ¢(f0)
will always be false. However, we can overcome this
difficulty by considering the domain over which our
data range is defined by a recursive program.

For example, the natural numbers can be character-
ized 6 by the least fixpoint n u m (x) of the recursive
program

N (x) ~ i f x = 0 then true else N (x ~ 1).

We can now translate any program P over the natural
numbers into the corresponding recursive program P '
and show that P ' terminates by simply proving the re-
lation

Vx[num(x) _ num(f~, (x))].

In other words, f e , (x) is defined and its value is a
natural number, whenever x is a natural number.

Equivalence. It should be quite clear at this point
that equivalence of two recursive programs is no more
difficult to prove than the other properties. Consider,
for example, the two recursive programs over the natural
numbers

PT: F(x) ~ i f x = Othen 1 e l s e x . F (x -- 1),

and

Ps: G(x, y, z) ~ i f x = y then z
e l s e G (x , y + l, (y + l) . z) .

6 Given that 0, 1, --, -k, = have their usual meaning.

W e want to show that

Vx[fe 7 (x) = ge8 (x, 0, 1)].

Note that both fP7 (x) and ge8(x, 0, l) computes x!,
but quite differently: f.~ 7 (x) is "going down" from x to
0, while ges(x, 0, l) is "going up" from 0 to x. This
explains why a "direct" computat ional induction fails
in this case.

However, if we consider the predicate x > y over
the natural numbers to be characterized by the least
fixpoint ge (x, y) of the recursive program

M(x , y) ~ i f x = y then true else M(x , y +1) ,

we can show by computat ional induction that

Vx, y[ge (x, y) c [f~7 (x) = g~s (x, y, fv7 (Y))]].

Then, in particular, for y - 0 we get

Vx[ge(x, 0) ~ [f~7(x) = gps(x, O, 1))]],

i.e. for every natural number x, both fvT(x) and
gvs(x, O, 1) must he defined and equal.

The proof by computat ional induction uses

~ (F) : Vx, y[F(x, y) c [fp7 (x) = g~8(x, Y, fvT(Y))]].

It is clear that ¢ (f °) holds. So, we assume that ¢(f~)
holds and show that ¢ (f ") holds, i.e.

Vx, y[fi+l (x, y) ~ [fP7 (x) = gps(x, Y, fP7 (Y))]],

or in other words,

Vx, y[[if x = y then true else f i (x , y + 1)]

[fe7 (x) = g~,~ (x, y, fe7 (Y))]].

The proof proceeds easily by distinguishing between the
two cases where x = y and x ~ y.
a. I f x = y we get Vx[true C fe~ (x) = fe~ (x)], which
is equivalent to showing that fv~ is total.
b. I f x ~ y t h e n

Vx, y[fi(x, y + 1) ~ [fvT(x) = g~,s(X, Y, fPT(Y))]].

Using the definitions o f f v 7 and gp, we get

Vx, y[f i (x , y + 1) c [f~7(x)
= gvs(x, y + 1,fv~(y + 1))]],

which holds by the induction hypothesis.

References

Ashcroft, E., and Manna, Z. (1971). The translation of "goto"
programs to "while" programs. Proc. IFIP Cong. 1971.

Bekid, H. (1969). Definable operations in general algebra and the
theory of automata and flowcharts. Unpublished memo,
IBM, Vienna, Dec. 1969.

Burstall, R.M. (1969). Proving properties of programs by
structural induction. Comput. J. 12, 1 (Feb. 1969), 41-48.

Cadiou, J.M. (1972). Recursive definitions of partial functions and
their computations. Ph.D. Th., Computer Sci. Dept.,
Stanford U., Stanford, Calif., June 1972.

535 Communications July 1972
of Volume 15
the ACM Number 7

Cooper, D.C. (1971). Programs for mechanical program
verification. In Machine Intelligence 6, B. Meltzer and
D. Michie, (Eds.), Edinburgh University Press, 1971, pp. 43-59.

deBakker, J.W., and Scott, D. (1969). A theory of programs.
Unpublished memo, Aug. 1969.

Dijkstra, E. (1968). Goto statements considered harmful. Comm.
A C M 11, 3 (Mar. 1968), 147-148.

Floyd, R.W. (1967). Assigning meanings to programs. In Proc.
of a Symposium in Applied Mathematics, Vol. 19,
Mathematical Aspects of Computer Science, J.T. Schwartz
(Ed.), Amer. Math. Soc., pp. 19-32.

Hoare, C.A.R. (1969). An axiomatic approach to computer
programming. Comm. A C M 12, I0 (Oct. 1969), 576-580, 583.

Hoare, C.A.R. (1971). Procedures and parameters: An axiomatic
approach. In Symposium on Semantics of Algorithmic
Languages, Lecture notes Mathematics, Vol. 188, E. Engelet
(Ed.), Springer-Verlag, Berlin, pp. 102-116.

Kleene, S.C. (1952). Introduction to Meta-mathematics. Van
Nostrand, Princeton, N.J., 1952.

Knuth, D.E., and Floyd, R.W. (1971). Notes on avoiding
"goto" statements. Information Processing Letters 1
(Jan. 1971), 23-31.

Landin, P.J. (1965). A correspondence between ALGOL 60 and
Church's lamda-notation. Comm. A C M 8, 2 (Feb. 1965),
89-101; Comm. A C M 8, 3 (Mar. 1965), 158-165.

Manna, Z. (1969). The correctness of programs. J. Computer &
System Sciences 3, 2 (May 1969), 119-127.

Manna, Z., Ness, S., and Vuillemin, J. (1972). Inductive
methods for proving properties of programs. Proc. ACM
Conf. on Proving Assertions about Programs, ACM,
New York, 1972.

Manna, Z., and Pnueli, A. (1970). Formalization of properties
of functional programs. J. A C M 17, 3 (July 1970), 555-569.

McCarthy, J. (1963a). A basis for a mathematical theory of
computation. In Computer Programming and Formal
Systems, P. Braffort and D. Hirschberg (eds.), Humanities
Press, New York, 1936, pp. 33-70.

McCarthy, J. (1963 b). Towards a mathematical science of
computation. Proc. IFIP Cong. 1962, North Holland
Pub. Co., Amsterdam, pp. 21-28.

Milner, R. (1972). Implementation and applications of Scott's
logic for computable functions. Proc. ACM Conf. on Proving
Assertions about Programs, ACM, New York, 1972.

Morris, J. H. (1968). Lambda-calculus models for programming
languages, Ph.D. Th., Project MAC, MAC-TR-57, MIT,
Cambridge, Mass., Dec. 1968.

Morris, J. H. (1971). Another recursion induction principle,
Comm. A C M 14, 5 (May 1971), 351-354.

Naur, P. (1966). Proof of algorithms by general snapshots, BIT
6 (1966), 310-316.

park, D. (1969). Fixpoint induction and proofs of program
properties. In Machine Intelligence 5, B. Meltzer and
D. Michie (Eds.), Edinburgh University Press, pp. 59-78.

Scott, D. (1970). Outline of a mathematical theory of computation.
Oxford U. Computing Lab., Programming Res. Group, Tech.
Mono. PRG-2, Oxford, England, Nov. 1970.

Scott, D., and Strachey, C. (1971).Towards a mathematical semantics
for computer languages. Tech. Mono. PRG-6, Oxford U.,
Oxford, England, Aug. 1971.

Strachey, C. (1966). Towards a formal semantics. Proc. IFIP
Working Conf. 1964, North-Holland Pub. Co., Amsterdam,
pp. 198-220.

Vuillemin, J. (1972). Proof techniques for recursive programs.
Ph.D. Th., Computer Sci. Dept., Stanford U., Stanford, Calif.
(to appear).

Weyhrauch, R., and Milner, R. (1972). Program semantics and
correctness in a mechanized logic. The USA-Japan Computer
Conf., Tokyo, Oct. 1972.

536 Communications
of
the ACM

July 1972
Volume 15
Number 7

