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Introduction 

Substantial progress has recently been made in un- 
derstanding the mathematical  semantics of program- 
ming languages as a result of Scott 's fixpoint theory. 
Our main purpose in this paper  is to introduce the 
reader to some applications of  this theory as a practical 
tool for proving properties of  programs. 

The paper consists of two parts. In Part  I the notion 
of a recursive program and its associated (unique) least 
fixpoint function are introduced. We describe the com- 
putational induction method, a powerful tool for prov- 
ing properties of the least fixpoint of a recursive pro- 
gram. We then illustrate how one could describe the 
semantics of an ALGOL-like program P by " t rans la t ing"  
it into a recursive program P '  such that the partial func- 
tion computed by P is identical to the least fixpoint of 
P' .  Works in this area include: [McCarthy, 1963a, 
1963b; Landin, 1965; Strachey, 1966; Morris, 1968; 

Beki~, 1969; Park, 1969; deBakker and Scott, 1969; 
Scott, 1970; Scott and Strachey, 1971; Manna,  Ness, and 
Vuillemin, 1972; Milner, 1972; Weyhrauch and Milner, 
1972]. 

In Part 2 of  the paper we illustrate some of the 
advantages of  the fixpoint approach to program seman- 
tics. First, we justify the inductive assertion methods of 
[Floyd, 1967 and Hoare,  1969, 1971]. Other verification 
methods such as recursion induction [McCarthy, 1963a, 
1963b], structural induction [Burstall, 1969], fixpoint 
induction [Park, 1969; Cooper,  1971], and the predicate 
calculus approach [Manna, 1969; Manna  and Pnueli, 
1970] can be justified in much the same way. Secondly, 
we emphasize that the fixpoint approach suggests a 
natural method for proving properties of  programs:  
given a program P, we can translate it into the corres- 
ponding recursive program P' ,  and then prove the 
desired properties for the least fixpoint of  P '  by corn- 
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putational induction. In contrast to other existing 
methods, this approach gives a uniform way of express- 
ing and proving different properties, including correct- 
ness, termination, and equivalence. This makes it very 
appealing for machine implementation [Milner, 1972]. 

Warning. The reader should be aware that some of 
the results presented in this paper hold only under cer- 
tain restrictions which are ignored in this informal 
presentation. 

Part 1. The Fixpoint Approach to Program Semantics 

1.1 Recursive Programs 
A recursive program is a LisP-like definition of the 

form 

F (x )  ~ r[F](x) ,  

where r[F](x) is a composition of base functions and 
the function variable F, applied to the individual vari- 
ables x = (x, y, z, ...). The following, for example, is a 
recursive program over the integers 

Po: F(x, y) ~ i f  x = y then y q- 1 
elseF(x,  F(x  -- 1, y -b 1)). 

We allow our base functions to be partial, i.e. they 
may be undefined for some arguments. This is quite 
natural, since they represent the result of some computa- 
tion which may, in general, give results for some inputs 
and run indefinitely for others. We include as limiting 
cases the partial functions defined for all arguments, 
called total functions, as well as the partial function 
undefined for all arguments. 

Let us consider now the following functions: 

f l ( x , y ) : i f  x = ythen y + 1 else x + 1, 
f2(x, y) :  i f  x > y then x + 1 else y - 1, and 
f 3 ( x , y ) :  i f  (x > y) /~ ( x - -  y even) then x + 1 

else undefined. 

These functions have an interesting common property. 
For  each i (1 _< i _< 3), if we replace all occurrences 
of F in the program P0 byf~,  the left-hand side and the 
right-hand side of the symbol ~ yield identical partial 
functions, i.e. 

f i ( x ,  y) = i f  x -- y then y - k  1 
elsef~(x, f i ( x -  1, y - k  1)). 

We say that the functions f l ,  f2 ,  and f3 are fixpoints of 
the recursive program P0 • There are two different ways 
to extend the regular equality relation. The natural ex- 
tension, denoted by = ,  is undefined whenever at least 
one of its arguments is undefined. The other one, de- 
noted by ----, is true if both arguments are undefined, and 
false if exactly one of them is undefined. Consequently, 
the funct ion~(x,  y) : x -F l, is not a fixpoint of P0 when 
y is undefined. 

Among the three functions, .~ has one important 
special property: for any (x, y) such that f~(x, y) is 
defined, i.e. (x > y) /X (x -- y even), both./l(X, y) 
and J~ (x, y) are also defined and have the same value 
asf~ (x, y).  We say that J~ is "less defined than or equal 
to"  f l  and f2,  and denote this by f3 c ~ and J~ ___ j~. 
It can be shown that f~. has this property not only with 
respect t o f l  and f2 but with respect to all fixpoints of the 
recursive program P0. Moreover, ~ ( x ,  y) is the only 
function having this property;J~ is therefore said to be 
the least (defned) fixpoint of Po. 

One of the most important results related to this 
topic is due to Kleene, who showed that every recursive 
program P has a unique least fixpoint (denoted by fp).  
(See [Kleene, 1952].) 

In discussing our recursive programs, the key 
problem is: what is the partial function f defined by a 
recursive program P? There are two viewpoints: (a) 
Fixpoint approach: Let it be the unique least f ixpointfp.  
(b) Computational approach: Let it be the computed 
function Cp for some given computation rule C (such 
as "call by name" or "call by value").  

We now come to an interesting point: all the theory 
for proving properties of recursive programs is based 
on the assumption that the function defined by a recur- 
sive program is exactly the least fixpoint f e ,  that is, 
the fixpoint approach is adopted. Unfortunately, many 
programming languages use implementations of recur- 
sion (such as "call by value"!) which do not necessarily 
lead to the least fixpoint [Morris, 1968]. 1 

Let us consider, for example, the following recursive 
program over the integers 

P1 : F(x, y)  ~ i f  x = 0 then I else F(x  -- 1, F(x, y)  ). 

The least fixpointfel can be shown to be 

fe, (x, y) : i f  x >_ 0 then 1 else undefined. 

However, the computed function Cel,  where C is 
"call by value," turns out to be 

Cp~ (x, y) : i f  x = 0 then 1 else undefined. 

Thus Ce 1 is properly less defined than fp~--e.g. 
C~ (1, 0) is undefinedwhilefp~ (1, 0) = 1. 

There are two alternative ways to view this problem. 
(1) Existing computer languages should be modified, 
and language designers and implementors should seek 
computation rules which always lead to the least fix- 
point. "Call by name" is one such computation rule, 
but unfortunately it often leads to very inefficient com- 
putations. An efficient computation rule which always 
leads to the least fixpoint can be obtained by modifying 
"call by value" so that the evaluation of the arguments 
of a procedure is delayed as long as possible [Vuillemin, 
1972]. (2) Theoreticians are wasting their time by 

It can be shown in general that for every recursive program P 
and any computation rule C, Cp must be less defined than or 
equal to fp, i.e. C~ C fp [Cadiou, 1972]. 
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developing fixpoint methods for proving properties of 
programs which do not compute fixpoints. They should 
instead concentrate their efforts on developing direct 
methods for proving properties of programs as they 
are actually executed. 

We shall indicate in Part 2 of this paper how the 
apparent conflict between these views can be resolved 
by a suitable choice of the semantic definition of the 
programming language. 

1.2 The Computational Induction Method 
The main practical reason for suggesting the fix- 

point approach is the existence of a very powerful tool, 
the computational induction method, for proving prop- 
erties of the least fixpointfp of a given recursive program 
P. The idea of the method is essentially to use an in- 
duction on the level of recurs!on. 

Let us consider, for example, the recursive program 

P2: F ( x )  ~ i f  x = 0 then 1 e l s e x . F ( x  -- 1) 

over the natural numbers. The least fixpoint fp~ (x) of 
this recursive program is the factorial function x!. 

Let us denote b y f  ~ (x) the partial function indicating 
the " information" we have after the ith level of re- 
cursion. That  is, 

f ° ( x )  is undefined for all x; 
f l ( x )  is i f  x = 0 then 1 else x . f ° ( x  - 1), 

i.e. i f  x = 0 then 1 else undefined; 
2 (X) f  is i f  x = 0 then 1 else x . f a ( x  - 1), 

i.e. i f  x = 0 then 1 
else x .  ( i f  x - 1 = 0 then 1 

else undefined), 
or in short, 

i f  x = 0 k~ x = 1 then 1 else undefined; 
etc. 

In general, for every i, i > 1, 

f ~ ( x )  is i f  x = 0 then 1 else x . f~ -~ (x  - 1), 

which is 

~,(fe), we show that ¢(f~) holds for all i > 0, and that 
remains true in the limit; therefore we may conclude 

that ~o ( l imi~ {fi} ), i.e. ¢ (fp), holds. 
Note that it is not true in general that ¢ remains 

true in the limit. For  example, for the recursive pro- 
gram P2 introduced above, f t ' (x)  is the nontotal  func- 
tion i f  x < i then x! else undefined, while l i m i ~  {f~}, 
i.e., fe2,  is the total function x!. Thus for ~o(f) being 
" f i s  not total," we have that ~o('f ~) holds for all i >_ 0, 
while ~ ( l i m ~  {.f~} ) does not hold. However, the limit 
property holds of a rather large class of ~ (called 
"admissible predicates"--see [Manna, Ness, and 
Vuillemin, 1972]); in particular, all the predicates that 
we use later have this property. 

There are two well-known ways to prove that ~ (f~) 
holds for all i _> 0, the rules for simple and complete 
induction on the level of recursion. 

(a) Simple induction : 
I f  ~ ( f  °) holds and Vi[~o(f ~) ~ ~,(f~+a)] holds, 
then ~ ( fv )  holds. 

(b) Complete induction: 
I f  Vi{[(Vj such that j < i) , ;(ff)] ~ ~p(fi)} holds,a 
then ~ ( f e )  holds. 

The simple induction rule is essentially the "u-rule" 
suggested by [deBakker and Scott, 1969], while the com- 
plete induction rule is the "truncation induction rule" 
of [Morris, 1971]. Scott actually suggested the more 
elegant rule: 

I f  ~(~2) holds and Vf[~o(f) ~ ~,(r[f])] holds, 
then ¢( f lO holds, 

which does not assume any knowledge of  the integers 
in its formulation. These rules generalize easily to sys- 
tems of mutually recursive definitions. 

Example.  Consider the recursive programs 

Pa: F(x ,  y, z )  ~ i f  x = 0 then y 
else F ( x  -- I, y + z, z )  

and 

i f  x < i then x!  else undefined. 

This sequence of  functions has a limit which is exactly 
the least fixpoint of the recursive program, that is, 

lim {f ' (x)} = x/. 

This will in fact be the case for any recursive program 
P: if P is a recursive program of the form 
F (x )  ~ r[F](x),  and f i ( x )  is defined by 

f0 (x) is f~ (undefined for all x) ,  and 
f~(x)  is r [ f ' - l ] ( x )  for i > 1, 2 

then 

lim {f '  (x) } --- fv  (x). 
i-~Qo 

P4: G(x ,  y )  ~ i f  x = O then y 
e l s e G ( x - -  1, y +  2 x - -  1). 

We would like to prove, using computational induction, 

f ~  (x, 0, x) = gp, (x, 0) for any natural number x. 

(Both functions compute the square of x.) 

2 rift-l] is the result of replacing all occurrences of F in r[F] 
by ff-k 

a Note that this includes implicitly the need to prove ~o(fo), 
since for i = 0 there is no j such that j < i. 

This suggests an induction rule for proving properties 
of  f e  : To show that some property ~ holds for f~,, i.e. 
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For  this purpose, we shall prove a stronger result 
than the desired one by simple computational induc- 
tion. Proving a stronger result often simplifies proofs 
by induction, since it allows the use of a stronger in- 
duction hypothesis. So, using 

~o(f, g)  : V x V y [ f ( y ,  x ( x  - y ) ,  x )  - g (y ,  x ~ - y2)], 

we try to show that 

~(f~3,  gP4) : VxVY[f~3(Y,  x ( x  - y ) ,  x )  
_-- ge,(Y, x 2 _ y2)] 

holds. The desired result then follows by choosing 
x = y. The induction proceeds in two steps: 

a. ¢ ( f 0 ,  gO), 

i.e. V x V y [ f °  (y, x ( x  - y ) ,  x )  =- gO(y, x 2 _ y2)]. 
Trivial, since VxVy[undef ined  - undefined]. 

b. Vi[~o(f i, g~) ~ ~(ju+1, g~+1)]. 
We assume V x V y [ f ~ ( y , x ( x  - y ) , x )  =- g ' ( y , x  2 - y2)] 
and prove V x V y [ f  ~+1 (y, x (x  - y ) ,  x )  

=_ g~+l(y, x 2 _ y2)]. 

f i+l(y,  x ( x  - y ) ,  x )  
=- i f  y = 0 then x ( x  -- y )  

e l s e f i ( y  -- 1, x ( x  -- y )  + x, x) 
=--- i f  y = O then x 2 

e l s e f i ( y - -  1, x ( x - -  ( y - -  1 ) ) , x )  
= i f  y = O t h e n x  2 

else g i ( y - -  1, x 2 -  ( y - -  1) 9 ) 

by the induction hypothesis 
=- i f  y = 0 then x ~ - y2 

else g~(y - 1, (x  2 - y2) + 2y - 1) 
=- gi+1 (y, x 2 -- y2). 

1.3 S e m a n t i c s  o f  A l g o l - l i k e  P r o g r a m s  
Our purpose in this section is to illustrate how one 

can describe the semantics of an ALGOL-like program 
P by translating it into a recursive program P'  such 
that the partial function computed by P is identical to 
the least fixpoint of P'.  The features of ALGOL we con- 
sider are very simple indeed, but there is no theoretical 
difficulty in extending them. 

The translation is defined blockwise: to each block 
B (or elementary statement) we associate a partial 
function fn describing the effect of the block (or state- 
ment) on the values of the variables. For  example, 

b e g i n x : =  x +  1 ;y  := y +  1 end, 

will be represented by the function 

f ( x , y )  --= ( x +  1, y +  1). 

Functions are then combined to represent the whole 
program using the rule: 

f~1 ;~2 (x )  - f R 2 ( A , ( x ) ) .  

This definition is unambiguous, since composition of  
partial functions is associative, i.e. 

f B s ( f s , ;  B2(x)) -= fB1; B2; B3(x) ~ f ~ ;  B8 (fB, (x)) .  

All that remains to be done is to describe the partial 
function associated with each elementary statement of 
the language. For  simplicity, we shall first consider 
only a "f lowchartable" subset of a language, with no 
goto statements or procedure calls. We shall also ignore 
the problem of declarations. 

1. Assignment statements: 

if B is x; := E(x)  where E is an expression, 
fB(x)  is (xl,  " '" , xi-1, E(x) ,  X i + l ,  " ' "  , Xn). 

2. Conditional statements: 

i f B i s  i f p ( x )  thenBx, 
f~(x)  is i f  p ( x )  then fB l (X)  else x, 

and 

i f B  is i f p ( x )  then B1 else B2, 
fB(x)  is i f  p ( x )  then f B l ( x )  else fB~(x) .  

3. Iterative statements: 

if B is while  p ( x )  do B1, 
f8 (x) is the least fixpoint of the recursive program 

F (x )  ~ i f  p ( x )  then F(fBl (x) )  else x. 

Example.  Let us consider the following program 
for computing the greatest natural number x smaller 
than or equal t o v ' a , i . e . x  2_< a < ( x +  1)2, whe rea  
is any natural number. (The computation method is 
based on the fact that 1 + 3 + 5 +  . . .  + (2n- -  1) = 
n 2 for every n > 0.) 

Ps: begin integer x, y, z; 
x : = O ; y : = z  := 1; 
while y < a do 

begin x := x -4- 1; 
z : = z + 2 ;  
y :=  y-}-z; 

end; 
end. 

The partial function computed by P5 is identical to 
the least fixpoint of P~, where 

P j :  Fo(a) ~ F(a,  0, 1, 1) 
F ( a , x , y , z ) ~ i f  y <_ a 

then F(a,  x -4- 1, y + z + 2, z -q- 2) 
else (a, x, y, z) .  

4. Goto statements: There has been much discussion 
(see, for example [Dijkstra, 1968; Knuth and Floyd 
1971; Ashcroft and Manna, 1971]) about the usefulness 
of goto statements: they tend to make programs diffi- 
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cult to understand and debug, and one might prefer to 
use while or for statements instead. Without entering 
further into this controversy, we shall see that the se- 
mantics of goto statements is quite complex. In par- 
ticular, it may lead to systems of mutually recursive 
definitions, and (not too surprisingly) it is indeed 
harder to prove properties of programs with goto state- 
ments. We consider two simple cases. 

I f  we have a block of  the form 

begin . . - ;  L: B ~ ; . . . ;  B~-j; goto L; B~+~ ; • • • ; 
B.  end, 

then we define 

fgoto~;Bi+l; ...; B~(x) to be the least fixpoint of the 
recursive program Fz (x) ~fB~;...;B~(X). 

If  we have a block of the form 

b e g i n . - . ;  goto L; B ~ ; . . . ;  Bi-1; L: Bi; Bi+t; 
• . .  ; B~ end, 

then we define 

f~,oto L;B1;...;B, (X) to be the least fixpoint of the recursive 
program F~(x) ~fB~;...;B,(X). 

Note that we have revised our rule of composition, 
since f . ;A,(x)  -- fB ' ( fB(x ) )  is not valid when B is 
a goto statement. Similarly, if we wish to allow goto's 
which jump out of iterative statements or branches of 
conditional statements, then we must change their se- 
mantic definition accordingly. 

Example. Let us consider another version of Ps, 
using only the operations successor and predecessor. 

PB: begin integer x, y, z; 
x : = 0 ;  y : = z : =  1; 
L: i fy_<athen 

begin integer t; 
x : = x + l ;  
z : = z + l ;  
t : = z + l ;  
M:i f t  >0 then  
begin y := y + 1; 

t : = t - - 1 ;  
goto M; 

end; 
z := z + 1; goto L; 

end; 
end. 

The partial function computed by P6 is identical 
to the least fixpoint of P6' where 

P6': F o ( a ) ~ F L ( a ,  0, 1, 1), 
FL(a, x , y ,  z) ~ i f  y < a 

t h e n F ~ ( a , x  + 1, y , z  + 1, z + 2) 
else (a, x, y, z) ,  

F~(a, x, y, z, t) ~ i f  t > 0 
then FM(a, x, y + 1, z, t -- 1) 
else FL ( a, x, y, z + 1 ). 

Let us now define the semantics of simple proce- 
dures without parameters. We shall not discuss problems 
such as "side effects," parameter passing, or the pro- 
cedure copy-rule for call by name. 

5. Procedures: 
a. For  the nonrecursive procedure 

procedure P; B 

(where P is the procedure name and B is its body), 
we define 

fcall P (X) to be fB (x). 

b. For  the recursive procedure 

procedure P; B[P], 

we define 

fc~n p (x)  to be the least fixpoint of the recursive pro- 
gram F(x )  ~ f B t v l  (x) 

where occurrences of call P will be replaced by F in 
the semantic definition fntel • 

6. An answer to the problem o f  "call by value": Our 
semantic definition of recursive procedures assumes 
that the implementation of  recursion in the language 
always leads to the least fixpoint. If this is not the case, 
we must change our semantic definition: to every pro- 
gram P we associate a recursive program P'  such that 
the least fixpoint of P' will always be identical to the 
partial function computed by P. Consider, for example, 
the program 

integer procedure P (integer x, y ) ;  
P := i f x  = 0 then  1 else P ( x  -- 1, P ( x , y ) ) ;  

If the implementation is "call by name," its semantics 
will be 

fcan v (x, y) is the least fixpoint of 

F(x,  y)  ~ i f  x = 0 then 1 else F ( x  -- 1, F(x,  y)  ). 

However, if the implementation is "call by value," its 
semantics will be 

fcan ~ (x, y)  is the least fixpoint of 

F(x,  y)  ~ i f  (x = 0 ) / k  def(y)  then 1 
else F ( x  -- 1, F(x,  y)  ), 

where the (computable) predicate def(y)  is true when- 
ever y is defined, and undefined otherwise. 

Part 2. Application to the Verification Problem 

Our purpose in the second part of the paper is to 
illustrate some of the advantages of the fixpoint ap- 
proach to program semantics. 
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2.1 Justification of the Inductive Assertions Method 
The most widely used method for proving proper- 

ties of "flowchart programs" is presently the inductive 
assertions method, suggested in [Floyd, 1967 and Naur, 
1966]. We shall illustrate the method on the simple pro- 
gram P5 above. To clarify our discussion we shall de- 
scribe the program as a flowchart: 

l i  i i 

[ z ~ z+2 I 

I 
We wish to show that this flowchart program, when- 
ever it terminates, computes the greatest natural num- 
ber smaller than or equal to x/a, i.e. that x 2 _< a < 
(x + 1)2 for any natural number a. 

To do this we associate a predicate Q(a, x, y, z), 
called an inductive assertion, with the point labelled a 
in the program, and show that Q must be true for the 
values of the variables (a, x, y, z) whenever execution 
of the program reaches point a. Thus, we must show: 
(a) that if we start execution with a > 0, then the as- 
sertion holds when point a is first reached, i.e. that 
Q(a, 0, 1, 1) holds; and (b) that the assertion remains 
true when one goes around the loop from a to a, i.e. 
that (y < a)/~ Q(a, x, y, z) implies Q (a, x + 1, y -t- z q- 2, 
z q- 2). To prove the desired result we finally show 
(c) that x 2 < a < (x -k- 1)2 follows from the assertion 
Q(a, x, y, z) when the program terminates, i.e. that 
(y > a) /k Q ( a , x , y , z )  impliesx 2 < a < (x-{- 1) 2. 

To verify the program, we take 

Q (a, x, y, z) to be 
(x 2__< a ) / ~  (y = ( x +  1) 2) /~ (z = 2 x +  1). 

We can then verify easily that conditions (a), (b), and 
(c) above, called the verification conditions, hold. 

Hoare 's  inductive assertion method [Hoare, 1969, 
1971] is actually a generalization of Floyd's method; 
he realized that if we wish to apply the method of in- 
ductive assertions to prove properties of a large pro- 
gram, we undoubtedly have to break the program into 
smaller parts, prove what we need about the parts, 
and then combine everything together. We will clearly 

break the program into pieces in the most convenient 
way for the proof, and, since composition of state- 
ments is associative, the way in which we group the 
statements of the program is irrelevant. For  example, 
if the given program is of the form 

B1 ; B~ ; B3 ; B4, 

we can associate the statements in several different 
ways, e.g. 

((B1 ; B2); ~3); B,,  
(B1 ; (B~ ; B3)); B4, 
(B1 ; B2); (B3 ; B4), or 
BI ; (B2 ; (B3 ; B4)). 

Although the programs do not look the same, all of  
them yield the same least fixpoint, and therefore they are 
equivalent. If we express other verification techniques 
using this notation, we find that Floyd and Naur consider 
only the first possibility, i.e. grouping statements to the 
left, while McCarthy and Manna and Pnueli only con- 
sider the last possibility, i.e. grouping statements to the 
right. (See [McCarthy, 1963b; Manna and enueli, 1970].) 

Following Hoare, we express this idea by writing 4 
{R}B{T} to mean that if R(x)  holds before executing 
the piece of program B and if B terminates, then T(x)  
will hold after executing B. 

We first apply verification rules to each statement 
of the program. Examples of such rules are: 
a. Assignment statement rule: 

Kin(x) R ~ ~ ,  implies {R}xi := E(x){S} 

K,E(x) where ~ ,  stands for the result of replacing all occur- 
rences of xi in S by E(x) .  
b. Conditional statement rule: 

{ R /k p} Bt{ T} and { R /k ~ P} B2{ T} implies 
{R} if p then B1 else B2 {T}. 

c. Iterative statement rule: 

{ R A p} B{ Ri implies {R[ while p do B{ R A "~ p} . 

We then compose pieces of the program until we get 
the entire program, using the following rules. 

d. Composition rule: 

{ R} B~{ S} and { S} B2{ TI implies { R} B~ ; B2{ T}. 

e. Consequence rules: 

R ~ S and { SI B{ TI implies { R/B { T}, and 
!R}B{S} and S ~ T implies {R}B{T}. 

4 We prefer this notation to Hoare's R{B}T. 
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Example. A proof of the correctness of the program 
P~, given above, could be sketched as follows. 

First, we establish, using the assignment statement 
rule, the following results: 

Since a > 0 ~ R(a, 0, 1, 1), where R(a, x, y, z) is 
(x 2_< a) /k (y = ( x +  1) 2) /k (z = 2 x +  1 ) ,wege t  

{a_> 0}x := 0 ; y  := z := l{R(a, x, y, z)}. (1) 

S i n c e R ( a , x , y , z )  /~ y <_ a D R ( a , x  + 1, y + z +  2, 
z + 2), we get 

{R(a, x, y, z) /k y < a}x := x +  1 ; z : =  z + 2 ;  (2) 
y := y + zIR(a, x, y, z)}. 

By using the iterative statement rule, we get from (2) 

{R(a, x, y, z)}  while y _< a do begin x :=  x + 1; 
z := z + 2 ;y  := y + zend { R (a, x, y, z) /k y > a}. (3) 

We now combine the results of (1) and (3) using the 
composition rule to obtain 

{a > O}Ps{R(a, x, y, z) A Y > a}. (4) 

S i n c e [ R ( a , x , y , z )  /k Y > a] D x ~ <_ a < (x + 1) ~, 
we apply the consequence rule and finally get 

{a >_ O}P~{x ~ <_ a < (x + 1)~}. (5) 
The reader may wonder why those rules are valid. 

It is therefore important that Hoare's verification 
rules can in fact be proved from the semantics we gave, 
just by using computational induction. We shall illus- 
trate this point by justifying two of the most powerful 
verification rules: the rule for while statements, and the 
rule for call of recursive procedures. For this purpose, 
we need to relate the notation {RIB{ T I to our fB (x), 
the partial function indicating the change of the values 
of the variables during the execution of B. {RIB{T} 
simply means that whenever R(x) is true, T(fB(x))  
is either true (if B terminates) or undefined. We can 
express this by the relation 

R(x)  ==¢. T(fB (x)),  

where " ~ "  is the usual implication, with the additional 
convention that a ~ b is true whenever a or b is un- 
defined. 

We are ready now to prove the following rules: 
a. Rule for while statements. The verification rule for 
while statements indicates that if the execution of the 
body of the while statement leaves the assertion R in- 
variant, R should hold upon termination of the while 
statement. More precisely, 

{R(x) /~ p ( x ) / B  {R(x)} implies 
{R(x)} while p(x)  do B {R(x) /~ ~ p ( x ) / .  

We therefore have to prove the following: 
THEOREM. Vx[R (x) /~  p (x) ~ R (fa (x))] implies 

Vx[R(x) ~ [R(fp(x))  /~ : - -p( fe (x) ) ] ]  where 
P: F(x)  ~ i f  p (x )  then F(f~(x) )  else x. 

PROOF. By computational induction. 
1. 'q" x[R(x) ~ R(f°(x))  /~ :-, p(f°(x))]  is clearly 
true according to our convention, of ~ ,  since R (f0 (x)) 
and :-- p (f0 (x)) are undefined. 
2. We assume 'q' x[R(x) ==> R( f i (x ) )  /~ : - -p ( f i (x ) ) ]  
and show V x[R(x) ~ R(f i+l(x))  /~ :-- p(fi+l(x))] .  
By definition o f f  i+~ we have 

R(f i+l(x))  =-- i f  p (x )  then R ( f f ( f ~ ( x ) ) )  else R(x) ,  
and 
p(f '+ l (x) )  =-- i f  p (x )  then p( j~( fB(x)))  else p(x) .  

We distinguish between two cases :5 

Case 2 A. p(x) is false. Then R(ff+l(x))  -- R(x)  
and p(ff+~(x)) ---- p(x) ,  so that R(x)  ~ R(f i+l (x) )  
/~ :-~ p (f~+~ (x)) is valid. 

Case 2 B . p ( x )  is true. Then R( f i+ i (x ) )  -~ 
R(f~( f~(x) ) )  and p(f~+~(x)) --= p( f f ( f~ (x ) ) ) .  By 
the assumption R(x)  /k p(x)  ~ R(fB(x))  holds, 
and since by the induction hypothesis 

i 
R(f~(x) )  ~ R ( f i ( f ~ ( x ) ) )  /~ ~ p ( f  (f~(x))) ,  we get 

i 
R(x) ~ R ( f  (f~(x)))  /k ~ p ( f ~ ( f ~ ( x ) ) ) .  Hence, 
R (x) ~ R (fi+l (x)) /k ~" p (fi~l (x)) as desired. 
b. Rule .for recursive calls. Let us consider a recursive 
procedure 

procedure P; B[P], 

where P is the name of the procedure and B[P] repre- 
sents its body. The verification rule for proving proper- 
ties of P is quite similar to computational induction, 
although its formulation might look rather paradox- 
ical: in order to prove a property of the recursive pro- 
cedure P, we are permitted to assume that the desired 
property holds for the body B[P] of the procedure! 
This can be stated as follows: 

Vg [{ R}g I T} implies {R} B[g]{ T}] 
implies {R} call P {T}. 

In [Hoare, 1971, p. 109] it is stated, "this assumption 
of what we want to prove before embarking on the 
proof explains well the aura of magic which attends a 
programmers's first introduction to recursive program- 
ming." 

The rule however is easy to justify. We have to 
prove the following: 

THEOREM. 
Vg[Vx[R(x) ~ T(g(x))] implies Vx[R(x) ~ T(fBt~l (x))]] 
implies 
Vx[R(x) ~ T( f (x) ) ]  ,,here P:F(x)  ~J~tpj  (x). 

PROOF. Again by computational induction. 
1. Vx[R(x) ~ T(f°(x))]  is true, since T ( f ° ( x ) )  is un- 
defined. 
2. We assume Vx[R(x) ~ T(f~(x))] and show 
VxlR(x) ~ T(f:+~ (x) )]. By the induction hypothesis, 
R(x)  => T(f~(x));  therefore by the assumption of the 
theorem, R(x)  ~ T(fB[/q (x)). Thus from the defini- 
tion o f f  '+~ we get R (x) ~ T ( f  ~+~ (x)), as desired. 

5 A more rigorous treatment would also require checking the 
case in which p(x) is undefined. 
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2.2 Translation to Recursive Programs  
In the present state of the art of  verifying programs, 

Hoare ' s  method is presumably the most convenient for 
proving the correctness of  programs. However, its main 
drawback is that it can handle only "partial  correct- 
ness" of programs, i.e. we can only show that the final 
results of the programs, if any, satisfy some given 
input-output relation. The method does not provide us 
any means for proving termination, and seems rather 
ill fitted for proving equivalence between programs. 

To show, for example, that the partial function de- 
fined by a given program P is monotonic increasing, we 
have to prove 

Vx,  y[(x < y) ~ ( fe , (x)  ~ fe,(Y))] .  

Note that it is rather awkward to express such a prop- 
erty as an input-output relation. 

This is another case where our semantic definition 
of the programming language pays off: properties like 
termination and equivalence can be handled in exactly 
the same way as partial correctness. The idea is quite 
simple: To prove some property of a given program P, 
translate it to the corresponding recursive program P' ,  
and then prove the desired property for f~,,, by compu- 
tational induction. In this method we may still associate 
the blocks of the program arbitrarily at our convenience. 

Termination. To show that fe  is total, or in general 
that g __c f~ for some function g which is total on the 
desired domain, we cannot simply use computat ional  
induction choosing ¢ (F)  to be g ~ F, as then ¢(f0) 
will always be false. However, we can overcome this 
difficulty by considering the domain over which our 
data range is defined by a recursive program. 

For  example, the natural numbers can be character- 
ized 6 by the least fixpoint n u m ( x )  of  the recursive 
program 

N ( x )  ~ i f  x = 0 then true else N ( x  ~ 1). 

We can now translate any program P over the natural  
numbers into the corresponding recursive program P '  
and show that P '  terminates by simply proving the re- 
lation 

Vx[num(x)  _ num(f~,  (x))].  

In other words, f e , ( x )  is defined and its value is a 
natural number,  whenever x is a natural number. 

Equivalence. It should be quite clear at this point 
that equivalence of two recursive programs is no more 
difficult to prove than the other properties. Consider, 
for example, the two recursive programs over the natural 
numbers 

PT: F(x)  ~ i f  x = Othen 1 e l s e x . F ( x  -- 1), 

and 

Ps: G(x, y, z) ~ i f  x = y then z 
e l s e G ( x , y +  l, ( y +  l ) . z ) .  

6 Given that 0, 1, --, -k, = have their usual meaning. 

W e  want  to show that  

Vx[fe 7 (x) = ge8 (x, 0, 1)]. 

Note  that both fP7 (x) and ge8(x, 0, l )  computes x!, 
but quite differently: f.~ 7 (x) is "going down"  from x to 
0, while ges(x, 0, l)  is "going up"  from 0 to x. This 
explains why a "direct" computat ional  induction fails 
in this case. 

However, if we consider the predicate x > y over 
the natural numbers to be characterized by the least 
fixpoint ge (x, y) of the recursive program 

M(x ,  y)  ~ i f  x = y then true else M(x ,  y +1) ,  

we can show by computat ional  induction that 

Vx,  y[ge (x, y) c [f~7 (x) = g~s (x, y, fv7 (Y))]]. 

Then, in particular, for y - 0 we get 

Vx[ge(x, 0) ~ [f~7(x) = gps(x, O, 1))]], 

i.e. for every natural number x, both fvT(x) and 
gvs(x, O, 1) must he defined and equal. 

The proof  by computat ional  induction uses 

~ (F) :  Vx,  y[F(x, y) c [fp7 (x) = g~8(x, Y, fvT(Y) )]]. 

It is clear that ¢ ( f ° )  holds. So, we assume that ¢(f~) 
holds and show that ¢ ( f " )  holds, i.e. 

Vx,  y[fi+l (x, y) ~ [fP7 (x) = gps(x, Y, fP7 (Y))]], 

or in other words, 

Vx,  y[[if x = y then true else f i ( x ,  y + 1)] 

[fe7 (x) = g~,~ (x, y, fe7 (Y) )]]. 

The proof  proceeds easily by distinguishing between the 
two cases where x = y and x ~ y. 
a. I f  x = y we get Vx[true C fe~ (x) = fe~ (x)], which 
is equivalent to showing that fv~ is total. 
b. I f x ~ y t h e n  

Vx,  y[fi(x,  y + 1) ~ [fvT(x) = g~,s(X, Y, fPT(Y) )]]. 

Using the definitions o f f v  7 and gp, we get 

Vx,  y[ f i (x ,  y + 1) c [f~7(x) 
= gvs(x, y + 1,fv~(y + 1))]], 

which holds by the induction hypothesis. 
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