
An Introduction to Proving the Correctness of Programs

SIDNEY L. HANTLER

and

JAMES C. KING

Computer Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598

This paper explains, in an introductory fashion, the method of specifying the
correct behavior of a program by the use of input/output assertions and describes
one method for showing that the program is correct with respect to those assertions.
An initial assertion characterizes conditions expected to be true upon entry to the
program and a final assertion characterizes conditions expected to be true upon
exit from the program. When a program contains no branches, a technique known
as symbolic execution can be used to show that the truth of the initial assertion
upon entry guarantees the truth of the final assertion upon exit. More generally,
for a program with branches one can define a symbolic execution tree. If there is an
upper bound on the number of times each loop in such a program may be executed,
a proof of correctness can be given by a simple traversal of the (finite) symbolic
execution tree.

However, for most programs, no fixed bound on the number of times each loop is
executed exists and the corresponding symbolic execution trees are infinite. In order
to prove the correctness of such programs, a more general assertion structure must
be provided. The symbolic execution tree of such programs must be traversed
inductively rather than explicitly. This leads naturally to the use of additional
assertions which are called "inductive assertions."

Keywords and Phrases: Program correctness, program proving, program verification,
proving correctness of programs, symbolic execution, symbolic interpretation

CR Categories: 1.3, 4.13, 5.21, 5.24

INTRODUCTION

I n t e r e s t in ve r i fy ing t h a t c o m p u t e r pro-
g r a m s b e h a v e as t h e y were i n t e n d e d to
b e h a v e has exis ted since t he a d v e n t of
m o d e r n e lect ronic compute r s . As t h e size
a n d complex i ty of c o m p u t e r p r o g r a m s have
increased , so has t he i m p o r t a n c e of assur ing
t h a t these p r o g r a m s b e h a v e re l iab ly . N a t u -
ra l ly , a t t e n t i o n has been focused on the
p r o b l e m of spec i fy ing prec ise ly w h a t con-

s t i t u t e s re l iab le behav io r and on deve lop ing
a t h o r o u g h m e t h o d for check ing t h a t a
p r o g r a m will a lways mee t those specifica-
t ions .

I t is t h e i n t e n t of th i s p a p e r to give a

t u t o r i a l p r e s e n t a t i o n of one a p p r o a c h for

showing t h a t a p r o g r a m mee t s i t s specifi-

ca t ion. T h e bas ic a p p r o a c h of us ing "cor-

rec tness asse r t ions" a n d t h e p a r t i c u l a r

fo rm of i n d u c t i o n used a re due to F l o y d

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish, but
not for profit, all or part of this material is granted provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Computing Survesm, Vol. 8, No. 3, September 1976

332 • S . L . H a n t l e r a n d J . C . K i n g

CONTENTS

INTRODUCTION
1. PROGRAMMING LANGUAGE AND SEMANTICS
2. CORRECTNESS OF PROGRAMS
3. SYMBOLIC EXECUTION AND SYMBOLIC

EXECUTION TREES
Symbohc Execution

4 I N F I N I T E SYMBOLIC EXECUTION TREES AND
INDUCTION

5. PROCEDURES
6. PROBLEMS
SUMMARY
ACKNOWLEDGMENTS
REFERENCES

v

[7]. The strategy explained in this paper for
composing a proof is similar to methods
developed by Deutsch [5] and Topor [21].
The presentation is informal; no theorems
are stated or proved. For the person who
understands what it means to execute a
program and who understands simple alge-
braic and mathematical concepts, the ideas
presented here are quite straightforward.
Rigorous presentations of similar material
are available elsewhere [6, 13, 18].

We begin by defining a very simple
programming language. Though simple,
the language contains the important basic
features of commonly used programming
languages. All examples in the paper are
written in this language, and in Section 2,
the concept of correctness for programs
written in the language is developed. The
symbolic execution of programs is intro-
duced in Section 3 as the basic tool for
building correctness proofs. In Section 4
the proof method is further developed for
programs with looping structures. In order to
show the generality of the technique, it is

extended to handle subroutines and func-
tions in Section 5. Finally, in Section 6,
there is a discussion of the state of the art
of program verification and its computer
automation, with an emphasis on research
into problems that remain unsolved.

1. PROGRAMMING LANGUAGE AND
SEMANTICS

In this section we describe a simple pro-
gramming language of a PL/ I style, suit-
able for introducing the notion of correct-
ness. In order to facilitate the exposition
and minimize the technical details, we choose
a particularly simple language, with only
basic statement types and simple arith-
metic expressions.

Procedures are declared by statements
of the form:

n a m e : PROCEDURE (Pl, P2, p 3 , . • • , p n) ;

(statement-list~
END;

where n a m e is the procedure name and pl,
p2, p s , . . . , pn are procedure parameters.
As usual, the body of the procedure con-
sists of a list of statements placed between
the PROCEDURE and the corresponding
END. There are two types of procedures:
1) functions, which are referenced from
within arithmetic expressions; and 2) sub-
routines, which are invoked explicitly by a
CALL statement. This distinction is dis-
cussed in more detail later.

Program variables are integer valued and
are declared by the DECLARE statement.
The statement

DECLARE var iab le1 , var iab l e2 , . . ,

va r iab l en INTEGER;

creates integer valued variables named
v a r i a b l e , , var iab le2 , . . . , va r iab l en . These
variables are known only within the pro-
cedure in which they are declared and a
"new" generation is created on each pro-
cedure call (cf., PL / I a u t o m a t i c variables).
Arithmetic operations on the values of

Cornputmg Surveys, VoL 8, No. 3, September 1976

A n Introduction to Proving the Correctness of Programs • 333

program variables yield new values. Values
of program variables and integer constants
may be added (-t-), multiplied (X), and
subtracted (-) . The basic assignment
statement has the form:

variable ¢--- (expression);

where variable is a declared program vari-
able and (expression) is an arithmetic ex-
pression in declared variables, integer con-
stants, and function names applied to the
appropriate number of arguments.

A function name occurring in the right-
hand side of an assignment statement causes
the function procedure associated with that
name to be invoked. Thus if name is a pro-
cedure with a single parameter which re-
turns the value 7 when invoked with the
argument 3, the result of executing

variable ¢--- (2 X name(3)) ~ 4;

is that the value of variable becomes 18.
Statements may be grouped together into

a compound statement by means of the
DO; (statement-list) END; construct. When
enclosed by the DO-END pair, the list of
statements is treated as if it were a single
statement.

Boolean primitives are constructed from
Boolean constants true and false and arith-
metic expressions (as on the right side of
assignment statements) connected by the re-
lational operators: less than (<) , greater
than (>) , equal (=) , and their comple-
ments (~_, _<, ~) . Boolean expressions
(denoted by (Boolean) below) are con-
structed using the Boolean primitives con-
nected by: and (&), or (D, implies (--*),
and not (7) . The value of a Boolean ex-
pression is either true or false.

The binary conditional is of the form:

IF (Boolean) THEN statement1 ELSE
statement2

where statementl and statement2 are state-
ments or compound statements. As usual,
either statement1 or statemente is executed,
depending on the truth value of the (Boo-
lean).

The iterative statement is of the form:

DO WHILE (Boolean); (statement-list)
END;

When control reaches the DO WHILE
statement, if the value of the (Boolean) is
true, the statement list is executed and
control is returned to the DO WHILE
statement. If the (Boolean) is false, control
passes immediately to the statement fol-
lowing the END statement.

As mentioned above, function procedures
are invoked by reference to the procedure
name within an arithmetic expression.
Parameters are passed exactly as described
in the following discussion about subrou-
tine procedures. In addition to the changes
that may be effected through the parame-
ters, function procedures return one special
value to be used in the invoking expression
evaluation. Subroutines are invoked and
parameters are passed by means of the CALL
statement. For example, the statement

CALL name (al, as, a3 , . . . , an) ;

causes the subroutine named name to be
invoked and the names of the formal
parameters pl, • • •, pn to be associated with
the names of the actual arguments a l , . . . ,
an, respectively. Parameter passing follows
the PL/ I "by reference" convention, i.e.
references to the actual arguments are
passed to the subroutine (or function).
When an argument is an expression, its
value is stored in a temporary storage loca-
tion, a reference to which is passed to the
subroutine.

For convenience in referring to the initial
values of the parameters of a procedure from
within correctness assertions, the initial
values of the parameters are stored in special
procedure variables which are denoted by
primed symbols. For example, after execu-
tion of the CALL statement above, the
values of a ~ , . . . , an upon entry to name are
preserved in the variables p~', . . . , pn,,
respectively.

Return from an invoked procedure is

Computing Surveys, Vol. 8, No. 3, September 1976

334 • S. L. Hantler and J. C. King

1 ABSOLUTE:
PROCEDURE(X);

3 DECLARE X, Y INTEGER;
4 I F X < 0
5 THEN Y (-- - X ;
6 ELSE Y ~ X;
8 RETURN (Y) ;
9 END;

FmURE 1. Function procedure ABSOLUTE.

achieved by means of the RETURN state-
ment, which may appear at any place in a
procedure. Each procedure has exactly one
RETURN statement. A RETURN state-
ment is of the form:

RETURN;

in a subroutine, and

RETURN ((expression));

in a function. The latter statement returns
the value of the (expression) as the value
of the function.

2. CORRECTNESS OF PROGRAMS

Having defined a simple programming
language in Section 1, we now discuss the
meaning of "correctness" of procedures
written in that language. We will provide a
method for formalizing the intended be-
havior of a procedure. In particular, con-
straints on the inputs to a procedure and
expected relations between inputs and out-
puts will be expressed as assertions over the
program variables. An input assertion is a
statement of the form:

ASSUME ((Boolean));

and usually appears immediately after the
PROCEDURE statement. For example, the
input assertion

ASSUME (pl > 0);

asserts that the value of the parameter p~ is
assumed to be positive on procedure entry.
An output assertion is a statement of the
form:

PROVE ((Boolean));

and usually appears immediately before the
RETURN statement of a procedure. For
example, the output assertion

PROVE ((X = Y') & (Y -- X'));

indicates that the values of the variables
X and Y have been interchanged. Note
that this is the relationship between inputs
and outputs which would be satisfied by a
correct interchange procedure.

Naturally, the notion of "correctness" of
a procedure should reflect this relation
among the input assertion, output asser-
tion, and procedure body. A procedure is said
to be correct (with respect to its input and out-
put assertions) if the truth of its input as-
sertion upon procedure entry insures the
truth of its output assertion upon procedure
exit. Notice that the question of program
termination is suppressed in this defini-
tion. Intuitively, a procedure is correct
provided that it behaves as expected when
it terminates. This is often called "partial
correctness," with the term "correctness"
or "total correctness" reserved for pro-
eedures that are partially correct and termi-
nate for all inputs.

A simple procedure is shown in Figure 1.
The function ABSOLUTE is intended to
return the absolute value of its parameter.
Inasmuch as no assumptions need be made
about the input parameter to ABSOLUTE,
the input assertion should be ASSUME
(true). The output assertion must specify
that, when the RETURN statement is
executed, the value of the procedure vari-
able Y is the absolute value of the initial
value of the parameter X. Thus, an ap-

Computing Surveys. YoL 8, No. 3, September 1976

An Introduction to Proving the Correctness of Programs • 335

propriate output assertion (among others),
describing what this procedure does, is
PROVE ((Y = X ' [Y = - -X') & Y > 0).
We will see later, that it is often important
to specify what a procedure does not do,
as well as what a procedure does. A more
complete output assertion, specifying that
the value of X is unchanged by the pro-
cedure ABSOLUTE, is PROVE ((Y =
X' I Y = - X ') & Y >_ 0 & X = X').

The procedure, with correctness as-
sertions, would then be as shown in Figure 2.
In this simple example, it is quite clear that
the procedure is correct. In the next section
we discuss a formal method of proving that
procedures (with input and output asser-
tions) are correct.

3. SYMBOLIC EXECUTION AND SYMBOLIC
EXECUTION TREES

A proof of correctness for a program is a
proof over all program inputs. Certainly
such a proof cannot, in general, be made
using any finite (small) collection of specific
inputs, but must be made with statements
about all inputs. One can use a standard
mathematical technique of inventing sym-
bols to represent arbitrary program inputs,
and then attempt a proof involving those
symbols. If no special properties of the
symbols, other than those expected to hold
for all inputs, are necessary for the proof,
then the proof is valid for each specific input.
If special properties of the symbols must be
assumed in order to construct a proof, then

an exhaustive case analysis can be per-
formed, providing a set of proofs, one for
each case, which collectively give a com-
plete proof.

Let us naively attempt to apply this
strategy to devise a correctness proof for
the simple program ABSOLUTE of Figure
2. A typical invocation of ABSOLUTE can
be represented by using a symbolic argu-
ment, say a: ABSOLUTE(a). We proceed
to execute the program using the symbol a
as the input value of X. The ASSUME
statement execution contributes nothing
since its argument is true, which places no
constraints on the input a. The execution of
the IF statement is more interesting. Here
one must determine if the value of X is
negative; that is, if a < 0. If a stands for
the integer 3 the answer is no, but if a is
- 3 the answer is yes. To answer this ques-
tion some assumption about the value of a
must be made, and a case analysis is re-
quired:

Case 1: Assume a < 0. In this case the
IF test would produce true and execution
would proceed into the THEN clause. Here
Y becomes the negative of the value of X,
(i.e., - a). Arriving at the PROVE state-
ment, one must show that, in this case, the
present values satisfy ((Y ffi X' J Y ffi - X ')
& Y > 0 & X ffi X').Since Y ffi - s a n d
X = X' = a, this becomes

(- a = a l - - a ffi - - a) & - - a > _ 0 ~ a = a

which simplifies to - a > 0 or more simply

1 ABSOLUTE:
P R O C E D U R E (X) ;

2 A S S U M E (true);
3 D E C L A R E X, Y I N T E G E R ;
4 I F X < 0
5 T H E N Y *-- - - X ;
6 ELSE Y +- X;
7 P R O V E ((Y = X ' l Y = - X ') & Y > 0 & X = X');
8 R E T U R N (Y);
9 END;

FIOURE 2. Procedure ABSOLUTE w i t h correctness assertions.

Computiug Surveys, Vol. 8, No. 3, September 1976

336 • S. L. Hantler and J. C. King

a _~ 0. Establishing the truth of the PROVE
statement then reduces to showing a _~ 0.
But we have assumed a < 0, so the proof
is trivial. In the case a < 0, the program is
correct.

Case 2: Assume a >_ 0. In this case the
IF test would produce false and execution
would proceed into the ELSE clause. Here Y
becomes the value of X or a. Arriving at the
PROVE statement, one must show that
((Y=X'i Y=-X')&Y_>O&X=X')
is true, when Y = ~, X = X' = a. That is,
to show that

= = - -) & - > = . ,

or simply a _> 0, is true. Again the proof is
trivial since a > 0 was assumed.

By the nature of the IF statement these
two cases are exhaustive (either a < 0 or
a ~ 0) and both yield correct results.
Therefore the program is correct.

Several points about this example should
be made. The assumptions used in the case
analysis resulted from an unresolved execu-
tion of the IF statement. The assumptions
were exactly the evaluated IF test and its
negation and were Boolean valued expres-
sions strictly over the input a. These as-
sumptions were needed as hypotheses to
establish the truth of the PROVE statement
in each case.

Symbolic Execution

In this section we attempt to explain the
basic "symbolic execution" technique used
informally in the preceding example, more
carefully and more completely. Within the
scope of the programming language used
here, consider the consequences of changing
the underlying computation facilities of the
language implementation (the program exe-
cution mechanism) from doing arithmetic
operations over integers to doing algebraic
operations over symbolic expressions. For
example, suppose that the variables X and
Y have the symbols a and ~ as their respec-
tive values. As a result of executing the
statement X (-- Y + X the value of X

becomes the formula a + ~. Executing
Y *-- 3 X X - Y next, would symbolically
calculate the formula 3 X a -F 2 X ~ as
the new value of Y.

Executing a program on a symbol manipu-
lating machine one might hope to obtain
algebraic formulas over the input symbols
as the values of the output variables. Then,
checking these results against the output
assertion, one could establish the correct-
ness, or incorrectness, of the program. As
even the extremely elementary example,
ABSOLUTE, shown above, demonstrates,
this is not quite so simple. That example
requires a case analysis, since Boolean ex-
pressions involving symbols often do not
simplify to true or false. For example, the
truth of a > 0 is not determined without
some information about a. However, sym-
bolic execution does provide a complete
way to establish program correctness when
augmented by such case analyses and by a
general inductive technique. Reconsider the
definition of program execution given in
Section 1, but assume that programs re-
ceive symbols or symbolic expressions as
input and are executed on a machine cap-
able of performing algebra. At procedure
invocation (CALL or function reference),
the transfer of control and the association of
arguments to parameters work the same as
before. Similarly the meaning of the RE-
TURN statement is unchanged.

The first construct where something more
interesting occurs is the assignment state-
ment. The usual execution first replaces all
variables in the right-side expression by
their values, then performs the indicated
arithmetic and assigns the resulting value
as a new value of the left-side variable. The
symbolic execution performs the algebraic
equivalent. The variables in the right-side
expression are replaced by their values
(parenthesized to maintain the proper scope
of operators). Since the values of variables
are formulas, the indicated arithmetic opera-
tions cannot be done numerically but are
simply represented symbolically, as in

Computing Surveys, Vol. 8, No 3, September 1976

An Introduction to Proving the Correctness of Programs • 337

algebra. The resulting symbolic expression
becomes the new value of the left-side
variable.

When the arithmetic expression involves
function calls the situation is more complex
and is discussed in a later section dealing
explicitly with procedure calls. There is
also the issue of whether or not algebraic
simplification should be performed on formu-
las resulting from the substitution of values
for variables in the right-side expression.
If no simplification is done, the formu-
las accurately characterize the exact compu-
tations that would have taken place had the
inputs been numbers. In fact, those compu-
tations can be done later according to the
formulas, getting the same results even with
respect to overflow and other machine
anomalies.

However, no simplification implies that
the formulas may become quite unwieldy.
As we will see shortly, theorem proving over
these expressions is required, and the diffi-
culty is increased if the formulas are very
complex. Since the objective of this paper is
to present the basic ideas of proving correct-
ness of programs as simply as possible, this
difficult question will not be addressed.
When convenient in examples, the formulas
will be simplified. In theory, the basic ap-
proach is valid whether or not the formulas
are simplified. In the extreme, one must
choose between very difficult theorem prov-
ing and specification writing (in the case of
no simplification), and results that, when
simplified, may not accurately apply in all
cases to an actual computer execution.

The symbolic execution of conditional
branching statements also parallels their
normal execution but with additional com-
plexity. Consider first the IF statement. Its
symbolic execution begins by replacing all
variables in its Boolean expression by their
parenthesized values. The resulting expres-
sion may be equivalent to true, false, or
some Boolean expression over the symbolic
program inputs. The last situation may
result in a case analysis as it did in the

ABSOLUTE example. Whenever the Bool-
ean result is neither true nor false, there is at
least one numeric program input for which
the result is false and at least one other for
which it is true. The execution cannot
proceed into either the THEN clause or
the ELSE clause and be valid for all inputs.
Thus, the case analysis is required.

Recall from the example that the assump-
tions which determine the cases are needed
later to establish the truth of the PROVE
predicate. The assumptions are also needed
to avoid considering impossible subeases
that may arise at subsequent conditional
statement executions. For example, con-
sider the execution of the two successive IF
statements:

I F X < 0 T H E N Y ~-- 88;
I F X = 3 T H E N Y ~-- 99;

with the value of X -- a. There are four
syntactic paths through these two state-
ments, but only three are semantically
possible. The impossible subcase can be
detected if the conditions on a necessary to
execute the choices of the first statement
(i.e., ~ < 0, a ~_ 0) are remembered and
used to determine consistent choices on the
second statement. These observations lead to
the notion of a "path condition," abbrevi-
ated pc. I t is a part of the symbolic execu-
tion-state and takes as its value the condi-
tions over the program's symbolic inputs
that determine each case, subcase, sub-sub-
case, etc. The pc is initialized to true at
the beginning of a symbolic execution and is
updated each time a new case is considered.

The complete description of the symbolic
execution of an IF statement of the form:

IF (Boolean) THEN statement1 ELSE
statement2

is as follows:

1) Evaluate the (Boolean) obtaining a
value, B, over the symbolic inputs.

2) Now decide if subcases for B and ~ B
should be formed. If pc --~ B, new subcases
are unnecessary since enough assumptions

Computing Surveys, Vol. 8, No. 3, September 1976

338 • S .L . Hantler and J. C. King

have already been made (recorded in the
pc) to determine that statement1 would
always be executed next. The symbolic
execution proceeds directly to statementl.
Similarly if pc --* ~B, the symbolic execu-
tion proceeds directly to statement2. If
neither (pc --* B) nor (pc --~ -~B), new
subcases for B and -~B are required as
described in steps 3 and 4, respectively.

3) Establish a subcase assuming B. Up-
date the pc with new conditions B by re-
placing it by (pCold & B), where pCo~d is the
most recent value of the pc (i.e., do the as-
signment pc ~-- pc & B). In this case, the
symbolic execution proceeds to statement~
with the revised pc.

4) Establish a subcase assuming -aB.
Update the pc with new conditions -~B by
replacing it by (pCold & ~B). In this case,
the symbolic execution proceeds to state-
ment2 with this revised pc.

The case of an IF statement execution in
which the evaluated Boolean reduces di-
rectly to true or false falls out at step 2.
Since the pc is never allowed to be false
(an impossible path), then (pc --* true) is
true and (pc --* false) is false for any pc.

One can also define the symbolic execu-
tion of the ASSUME and PROVE state-
ments which specify the program's correct-
ness as follows:

ASSUME ((Boolean)) :

1) Evaluate the (Boolean) by substi-
tuting parenthesized values for variables.
Call the result B.

2) Update the pc to the value (pCold & B).

This has the effect of confining the subse-
quent symbolic execution to the case where
the (Boolean) is true, which is the intention
of the input assertion.

PROVE ((Boolean)) :

1) Evaluate the (Boolean) by substitut-
ing parenthesized values for variables. Call
the result B.

2) If (pc --* B) print "verified" otherwise
print "not verified."

This statement prints "verified" or "not
verified" depending on whether or not the
program variable's values satisfy the output
assertions in this case. The conditions de-
fining this case are given by the pc.

The complete symbolic execution of a
program like ABSOLUTE of Figure 2 can
be compactly represented by a "symbolic
execution tree." The tree for that example is
shown in Figure 3. I t is similar to a program
flowchart, with each statement execution
being represented by a node, and a transfer
of control between statement executions by
an arc. The nodes are labeled with the
program statement numbers, and the arcs
leaving statements are labeled by the
changes to the execution state, if any,
caused by the execution of the preceding
statement. Of course, a conditional state-
ment execution node will have more than
one arc leaving it when the choice of suc-
cessor statement remains unresolved. Nodes
for nonexecutable statements (e.g., DE-
CLARE) are omitted from the trees shown
here to conserve space. Since the tree of
Figure 3 covers all possible executions of the
program ABSOLUTE, in each case printing
"verified," ABSOLUTE is correct.

We have yet to discuss the symbolic
execution of DO WHILE statements.
Without them in our language there is no
means for program looping, and non-looping
programs always have finite symbolic exe-
cution trees. As in the proof of the ABSO-
L U T E procedure, symbolic execution pro-
vides a convenient way to prove the cor-
rectness of procedures with finite symbolic
execution trees. Such programs are correct
provided that "verified" appears at each leaf
of their symbolic execution trees.

However, infinite symbolic execution
trees may occur when their corresponding
procedures contain the iterative DO WHILE
statement of the form

DO WHILE (Boolean); (statement-list)
END;

Its symbolic execution follows naturally
from the symbolic execution of the IF state-

Computin~ Surveys. Vol 8. No. 3, September 1976

An Introduction to Proving the Correctness of Programs

pc a < /

Y" - a

)

pc: true, X: a , F: -

pc true
r

~ c - a_>O fah~
twrified

((-aria I - a f t - a) & -a>O& a •a)

return - a

(

(

)
Y:a

p

verified

((a= al a = - a) &
a > O & a = a)

return a

FIGUnE 3. Symbolic execution tree for procedure A B S O L U T E .

339

1 GCD:
PROCEDURE (M, N);

2 ASSUME (M > 0 & N > 0);
3 DECLARE M, N, A, B INTEGER;
4 A~---M;
5 B~---N;
6 DO WHILE (A # B);
8 I F A > B
9 THEN A <-- A - B;

10 ELSE B ¢-- B -- A;
11 END;
12 PROVE (A = (M, N));
13 RETURN (A);
14 END;

FIGURE 4. Procedure G C D with correctness assertions.

ment. The decision to execute the statement
list, go on to the statement following the
END, or develop those choices as alterna-
tive subcases is determined by examining
the Boolean expression as was done for IF
statements.

An example of an infinite symbolic execu-
tion tree is shown in Figure 5 for the pro-
cedure of Figure 4. The procedure of Figure
4 computes the greatest common divisor of
its positive inputs M and N. The procedure's
correctness is specified using the standard

ComputiQg Surveys, Vol. 8, No. 3, September 1976

340 • S. L. Hantler and J. C. King

mathematical notation where (M, N)
stands for the greatest common divisor of
M and N. For example, (3, 12) = 3, (20, 15)
= 5, and (4, 4) = 4. Let a and b be integers.
The greatest common divisor can be char-
acterized by three axioms:

(a,a) = a i f a > 0,
(a, b) = (b, a),
(a, b) = (a + b, b).

Note that the infinite portion of the tree,
as shown in Figure 5, is caused by the in-
finite sequence of unique conditions in-
volving the symbolic inputs.

A program which has an infinite symbolic
execution tree may have no particular input
which causes an infinite program execution.
The symbolic execution tree is infinite
because there is always yet another, differ-
ent, execution which requires more state-
ment executions. Of course, a program
which has a nonterminating execution has
an infinite symbolic execution tree.

How can the method presented above be
applied to programs which generate infinite
symbolic execution trees? A general answer
to this question is provided by using an
inductive technique to "traverse" the in-
finite paths. This is discussed at length in
Section 4. Otherwise one can reduce the
problem to the one already discussed by
restricting attention to finite subtrees of
infinite symbolic execution trees. Recall
that symbolic execution actually furnishes a
proof of correctness for procedures with
finite symbolic execution trees.

We illustrate this point by considering
variants of the procedure GCD of Figure 4.
Suppose, for instance, that we replace the
initial ASSUME statement of that pro-
cedure by ASSUME(false). The resulting
procedure not only has a finite symbolic
execution tree (in fact, an empty tree), but
it is also guaranteed to be correct. Natu-
rally, the empty subtree of an infinite
symbolic execution tree is an extreme and
uninteresting subtree to study. A better
choice of subtree results from a more subtle

restriction of the initial assertion of the
program.

Suppose that the initial ASSUME state-
ment were modified to ASSUME (M > 0
& N > 0 & M = C X N & C <_ 1000).
We would then be restricting attention to
that finite subtree of the GCD procedure
corresponding to the case in which one of
the variables is a small multiple of the
other. Without inductive assistance of any
kind, symbolic execution can provide a
proof of correctness of this modified pro-
cedure.

Inasmuch as our principal interest is in
the original GCD procedure rather than the
modified procedure, it is perhaps better to
think of the consideration of finite subtrees
of an infinite symbolic execution tree as a
form of testing. The finite subtrees represent
the test cases of interest. Notice that test-
ing using symbolic execution differs from
more traditional testing techniques in at
least two respects. First, ordinary testing
covers at most a finite number of specific
inputs, while testing by symbolic execution
usually covers an infinite number of specific
inputs. Second, when correctness assertions
are supplied in procedures, symbolic testing
provides a proof of correctness for the test
cases being considered, rather than merely
providing output values for each test case
considered.

As a testing technique, symbolic execu-
tion appears to be an extremely promising
new tool. It is the topic of a recent PhD
thesis by Clarke [4], and Boyer et al. [1]
have explored the generation of test cases
using symbolic execution. The authors and
their colleagues have developed a prototype
symbolic execution system called EFFmV
[16] which includes features for program
testing as well as for program proving.

4. INFINITE SYMBOLIC EXECUTION TREES AND
INDUCTION

Programs contain a finite number of state-
ments. Since the nodes on an infinite sym-

Computing Surveys, Vol. 8, No. 3, September 1976

An Introduction to Proving the Correctness of Programs

• pc: true, M : i ~ , N : v

341

~ c : p > O & u > O

A: p

B: v

p c : p . > O & v > O & ~ # v pc:/z > 0 & v > O & / z l V

p c : p > O & v > O & p L > v p c : ~ > O & v > 0 & / ~ < v

nrified

(p ffi (p , v))

return

A: ~ - $t

/ / true I
/

p c : ~ > O & v > 0 &
p. > v & /., - v # v

pc:/.t > 0 & v > O &

/ . * < v &p. # v- / .L /
f/lttlg~e

p c : / . , > O & v > 0 &

verified

(p - v f f i (p , v))

B: it -

p c : p > O & v > O l

p . < u & p.. ffi v - ~

~erifled

(~ = (~, v))

return

" ~ fetu['ii ~.t - v

FIGVRE 5. Symbolic execution tree for procedure G C D .

bolic execution tree are labeled by program
statements, some statement labels must
occur an infinite number of times. Thus, the
infinite portions of the symbolic execution
tree are generated by looping in the program.

In the case of our programming language the
sole loop construct is the DO WHILE
statement.

Each loop traversal can be isolated by
placing a "cut" (mark) at least once within

Computing Surveys, Vol. 8) No. 3) September 1976

342 • S .L . Hantler and J. C. King

every loop. The induction to be described is
valid even if a loop is cut more than once,
so it is trivially possible to cut all loops by
placing a cut between every two program
statements. Generally one cuts each loop
just once. In our language, the cuts can be
made by placing a mark between each DO
WHILE and its statement body.

For simplicity in the subsequent discus-
sion, consider that a cut has also been placed
immediately after the PROCEDURE state-
ment. Then imagine a symbolic execution of
the program which begins at one of the
cuts. Beginning at such an arbitrary point
in a program, the "inputs" are, in fact,
represented by the program state, so con-
sider all program variables initialized to
unique symbolic values, and the pc initialized
to true. A symbolic execution, from this
point on, is representative of all cases
for which execution reaches the cut, inde-
pendent of the values of the program vari-
ables; the new unique symbolic values repre-
sent all cases. The symbolic execution stops
whenever any subsequent cut or the final
program RETURN is encountered. Since
each program loop has been cut, this sym-
bolic execution will terminate in all cases
and have a finite symbolic execution tree.

Call each such symbolic execution start-
ing at a cut a cut (symbolic) execution and

the corresponding tree a cut (symbolic execu-
tion) tree. If one were to place an ASSUME
statement at a cut C and PROVE state-
ments at each cut which terminates C's cut
tree (the RETURN already has a PROVE
just preceding it), the proof of correctness
(with respect to those input/output asser-
tions) for the cut execution of C can be
discussed. Since the cut tree is finite, a
proof as described in the previous section
can always be attempted. If it succeeds,
any execution which begins at the cut with
values satisfying the cut input assertion is
guaranteed to reach another cut and the
program values at that point will satisfy
the associated output assertion.

The proof of correctness of the entire
procedure can be constructed from proofs of
the cut executions. What is needed are the
input/output assertions hypothesized for
each cut tree and an explicit argument for
the composition of the overall proof from
the pieces. One appropriate assertion as-
sociated with each cut makes both possible.
The word "appropriate" is used because
these cut assertions (more commonly called
"inductive assertions" or "inductive predi-
cates") correspond to the inductive hy-
pothesis in the usual proof by mathematical
induction and are often quite difficult to
discover.

1 GCD:
PROCEDURE (M, N);

2 eut~--- ASSUME(M > 0 & N > 0);
3 DECLARE M, N, A, B INTEGER;
4 A (- - M ;
5 B~--N;
6 DO WHILE (A ~ B);
7 cut7--- ASSERT ((A, B) = (M, N) & A ~ B);
8 I F A > B
9 THEN A *-- A -- B;

10 ELSE B *- B -- A ;
11 END;
12 PROVE (A = (M, N));
13 return---RETURN (A);
14 END;

FIGURE 6. Procedure GCD with inductive assertion.

Computing Surveys, Vol. 8, No. 3, September 1976

An Introduction to Proving the Correctness of Programs • 343

Suppose that by some "inductive genius"
appropriate assertions are placed at each
cut, except the first one, by use of a new
statement of the form ASSERT ((Boolean)).
Figure 6 shows the cuts and the inductive
assertion for the GCD procedure of Figure 4.
Two definitions for the symbolic execution
of the ASSERT statement are supplied de-
pending upon the context in which it is
encountered. Refine the definition of cut
execution such that the ASSERT statement
is encountered as the first statement (just
after the variables have all been set to
unique symbols). (In this case, assume the
actual cut-mark is placed just above the
ASSERT statement.) When executing the
ASSERT statement in this context, it is
treated exactly as if it were an ASSUME
statement; it supplies a cut execution input
assertion. When each cut that terminates a
cut execution is encountered, execute the
associated ASSERT statement as if it
were a PROVE statement. (In this context,
assume the actual cut-mark is placed just
below the ASSERT statement.) Note that
one ASSERT statement can be treated as
both an ASSUME statement and as a
PROVE statement depending on the con-
text.

Special cases at the beginning (PRO-
CEDURE) and at the end (RETURN) of
the program are obvious but must be men-
tioned. The initial cut after the PROCE-
DURE statement is never encountered as a
terminating cut and is followed immediately
by the ASSUME statement for the overall
program, so no ASSERT statement is
needed. The input cut assertion, for paths
starting at the initial cut, is provided by
executing the program's ASSUME state-
ment. Whenever a cut execution is termi-
nated by the program RETURN statement,
the program's original PROVE statement
will have just been executed; so here too no
ASSERT statement is needed. The result of
the program's PROVE serves as the result
for~f:he cut execution.

The following claim for this proof of cor-

rectness method is now easy to establish
using an inductive argument. I f inductive
assertions can be placed at each cut (except the
first) by means of ASSERT sSaSements such
that the cut executions for all cuts are correct
with respect to those assertions, then the pro-
gram is correct. I f such assertions do not exist,
then the program is not correct.

The proof of a cut execution establishes
that for any set of values of the program
variables that satisfy the cut input asser-
tions (including those which result from an
actual execution of the procedure to this
point), the execution ultimately arrives at a
subsequent cut and the associated output
assertion is satisfied by the resulting values
of the program variables. But since only one
assertion has been associated with each cut,
it is both the output assertion for all cut
executions arriving at the cut and the
input assertion for the cut execution leaving
the cut. Any values which satisfy it as an
output assertion also satisfy it as a subse-
quent input assertion.

For any particular program input which
satisfies the program's input assertion, the
values computed upon arrival at the next
cut satisfy its associated cut assertion. But
that, in turn, guarantees that the values
computed upon arrival at the next cut
satisfy its associated cut assertion. But the
values computed upon arrival at the final
program RETURN satisfy the program
output assertion. Since a proof for any
program input can be made from the cut
proofs, the program is correct for all inputs.
The program of Figure 6 has two cuts and
therefore two cut executions. The cut trees
for these two cut executions are shown in
Figures 7 and 8. Since "verified" is printed
at each leaf of these trees, the program is
correct.

5. PROCEDURES

Any proof technique must be able to cope
effectively with programs which call sub-
routines and functions. (We will denote the

Computing SurveyB, Vol. 8, No. 3, September 1976

344 S. L. Hantler and J. C. King

cut 2

+
pc'true, M : p , N: v , A: a , B: ~

pc: ~ > 0 & v > 0

q~

pc- / z > O & v > 0 & /z > 0 & v > 0 & p = v

(p= (t~,v))

cut 7] ~ return ((/~,v,)==(t,,,v) &~.#v)

FIGURE 7. Cut tree for cut~ of GCD.

subroutines and functions, subprocedures.)
The notion of symbolic execution naturally
extends to such calls, which involve transfer
of control (with provision for return), some
reassociation of variables and values and
the creation/destruction of local procedure
variables. All these operations remain con-
ceptually the same whether the values of
variables are symbolic formulas or num-
bers. A symbolic execution tree for a sym-
bolic program execution including pro-
cedure calls is also conceivable, as is a proof
of correctness as already presented. Con-
sider the revised greatest common divisor
procedure called GCD2 shown in Figure 9.
I t has been modified so as to call the
ABSOLUTE procedure of Figure 1. The
cut execution for cut2 is identical to that of
Figure 7 for procedure GCD. The cut execu-
tion for cut7 is shown in Figure 10. The sym-
bolic execution "executes into" the pro-
cedure ABSOLUTE. The nodes in the tree

resulting from executing statements in
ABSOLUTE are denoted by triangles to
distinguish them from those of GCD$.

However, this method requires one to
"start from scratch" with every proof, re-
proving properties of each subprocedure at
each invocation. A method which allows
one to prove a procedure is correct and then
use this proof as a lemma in the proof for a
calling procedure is needed. Such a method
is described next.

Once a procedure (subprocedure) has
been proved to be correct with respect to
some input/output assertion pair, two con-
sistent sources of information about that
procedure's behavior exist: 1) The pro-
cedure itself as an executable algorithm (the
procedure's codebody); and 2) properties
proved correct as described in the input/
output assertions.

There are two important points to note
about the program characterization pro-

Computing Surveys, Vol. 8, No 3, September 1976

A n Introduction to Proving the Correctness of Programs • 345

cut 7

pc: true, M : p. , N : v , A : a , B: /3

pc (a , / 3) " (p , v) & a # / 3

pc: (a , B) - (~ , u) & a > B .J
pc. (a,/3) f (p ,v) & a</3

A~ ~ - ~
B: /3 - G

rt.l~e

pc (a,B)-(p,v) a a > B &
a -/3 -/3 t,,.

pc (a , / 3) - (p , y) & a < / 3 &

verified

(a -/3 - (9.,1'))

verified

(a - (p , v))

return a - - /3

(a,/3) ffi(~,v) & a>/3 & a - / 3 # / 3

cut 7

verlfied

((a-/3,/3) ffi(~,v) & a - B ~ / 3)
cut-]

FIGVaE 8. Cut tree

vided by the input/output assertions:
1) They do not necessarily characterize

everything the program does, but just some
of the effects. Any program is correct with
respect to the output assertion true which
states nothing about the results. The output
assertion is supplied by the programmer and
includes only what he feels is important.

2) The information is not generally a
description of how to compute the results,
but rather a description of properties which
the results satisfy. The output assertion on
the program of Figure 2 ((Y = X ' I Y =
--X') & Y > 0 & X -- X') does not de-
scribe how to calculate such a value for Y.
The input/output assertions are more usable

fetorR

(a,/3)f(p,v) & a<~ & a ~ B - a

verified

((a,/3-a)ffi(p,v) & a # / 3 - a)

for cut7 of GCD.

in a correctness proof for a calling procedure,
than the subprocedure codebody since they
do not involve the dynamics of how to calcu-
late the procedure results but simply de-
scribe them.

The basic approach for dealing with sub-
procedures appeals to the same idea as does
the main technique: use symbols to represent
arbitrary values of program variables. The
effect of executing a procedure is the altera-
tion of some of the values of the calling
procedure's variables and, in the case of a
function call, the additional effect of re-
turning a value for the function. New unique
symbols are invented, one for each variable
of the calling procedure which could have

Computing Surveys, Vol. 8, No. 3, September 1976

346 • S .L . Hantler and J. C. King

1 GCD~:
PROCEDURE (M, N);

2 cut2--- A S S U M E (M > 0 & N > 0) ;
3 DECLARE M, N, A, B, D INTEGER;
4 A~---M;
5 B * - - N ;
6 DO WHILE (A # B);
7 cutT--- ASSERT ((A, B) = (M, N) & A # B);
8 D ~ ABSOLUTE(A - B);
9 I F A > B

10 THEN A ~ D;
11 ELSE B *- D;
12 END;
13 PROVE (A = (M, N));
14 return.--RETURN (A);
15 END;

FIGURE 9. GCD$ procedure which calls ABSOLUTE.

had its value altered by the procedure call.
Instead of symbolically executing the pro-
cedure codebody, the values of the potenti-
ally affected calling program's variables are
replaced by these new symbols. If the sub-
procedure has been proved correct, its output
assertion holds for these new values and
provides the information about these values
needed for the proof.

The complete process can be explained
precisely as the normal symbolic execution
of an "abbreviated procedure" which is
derived simply from the original subpro-
cedure as follows:

1) Change the procedure's initial AS-
SUME statement to a PROVE statement,
leaving its argument unchanged.

2) Change the procedure's final PROVE
statement to an ASSUME statement, leav-
ing its argument unchanged.

3) Replace the complete code body of the
procedure by a sequence of assignment
statements, one for each variable which can
be altered by the procedure, of the form:

v, *-- NEWSYMBOL;

The built-in function NEWSYMBOL is
defined to return as its value a new symbolic
value each time it is called.

The abbreviated procedure for the pro-
cedure ABSOLUTE of Figure 2 is shown in
Figure 11.

Consider a program P which makes ref-
rence (either by CALLs or by function
references) to procedures QI, Q2, • • • , Qn.
Assume that each procedure Qi has been
proved correct with respect to its ASSUME/
PROVE statements. Replace each pro-
cedure Qi by its abbreviated procedure.
Suppose that P has ASSUME/PROVE
statements and that each loop of P has
been cut by an ASSERT statement. A
proof of correctness of P, with respect to
its input/output assertions, under the as-
sumption of the correctness of the pro-
eedures Qi, proceeds just as described be-
fore in Sections 3 and 4. The cut execution
for cut~ from GCD~ of Figure 9, using the
abbreviated procedure of Figure 11, is
shown in Figure 12. The cut execution for
cuts remains the same as before and is shown
in Figure 7. These two cut executions es-
tablish the correctness of the procedure
GCD~.

Whenever an invocation of a procedure
occurs during the symbolic execution of
paths of P, the abbreviated procedure is
invoked. Suppose Q is such an abbreviated
procedure. The proof of Q assures one that

Computing Surveya, Voi. 8, No 3, September 1976

An Introduction to Proving the Correctness of Programs

(

C

Z

/
(a,/3)-(p,v) & a < B ~ . - - ' I ~ pc:

¥: B - a 1

Zx
ro ,um

D: ~-a

known fa lse

#: B-a

a~ '~ a < B & a , - B - a

~ verified

, v) &

f~ - a

7~ veriJicd
cut 7 ((a,f~-a)f(p,v) & a ~-a)

cut

pc. true, M : l.t , N: v , A : a , B: ~ , D: 8

pc: (a,/~)f(p,~) & a~/~

)
mvoke A B S O L U T E

x: a - ~

\
~ p c . (a,/~) ffi (/~,v) & a >/3

IT: a-~

~ return a - ~

V D: a - ~

,)
V known true

o)

• 347

~ A: a -~9

/ (l a ~ return a - f~
/pc (a, f~) - (~, ~) & ~4.W

f4#/ a >~ &a-~
) ~eri/ied

cut 7 ((a - j ~ , j ~) ffi (p , v) & (~ - ~ ~)

FIGURE 10. C u t t r e e f o r c u b of G C D ~ .

ASSUME to PROVE) provides the simple
key to accomplishing this check. The. sym-
bolic execution into the abbreviated pro-
cedure up to and including the PROVE
statement accomplishes the check in each
case. A PROVE statement is defined to
print "verified" or "not verified" depending
upon whether or not its associated predi-

if the initial input assertion of Q is satisfied
by the values of the variables at its invoca-
tion, the output assertion will be satisfied
by the values at the RETURN. Therefore,
one must now show that the values input
to this invocation satisfy Q's original AS-
SUME statement. The first step in creating
the abbreviated procedure (i.e., changing

Computing Surveys, Vol. 8, No. 3, September 1976

348 • S .L . Hantler and J. C. King

1 ABSOLUTE:
PROCEDURE (X) ;

2 PROVE (true) ;
3 DECLARE X, Y INTEGER;
4 X ~-- N E W S Y M B O L ;
5 Y ~-- N E W S Y M B O L ;
6 A S S U M E ((Y = X'h Y = - -X') & Y >_ 0 & X = X');
7 R E T U R N (Y);
8 END;

FIGURE 11. A b b r e v i a t e d p r o c e d u r e A B S O L U T E .

cate is true. It should be noted that the pc
(used by the PROVE statement) is con-
sidered as part of the underlying (symbolic)
machine state, describing conditions over
the symbolic constants. It does not relate to
program variables and therefore is unaf-
fected by the procedure invocation and has a
global scope across the complete program
execution.

If the execution of any PROVE state-
ment results in "not verified," the proof of
correctness fails. This includes the execution
of the PROVE statement just discussed.
If it does not hold, the output assertion of
the procedure cannot be guaranteed to
hold and its use would be invalid.

Next the symbolic execution of the ab-
breviated procedure Q would reset all vari-
ables accessible to Q to new unique symbols.
These represent the new values the pro-
cedure Q would compute in an actual execu-
tion. In the case that Q is a function, one
of these new symbols, being the value of the
RETURN statement, would also subse-
quently be returned as the function's value.
The abbreviated procedure next contains an
ASSUME statement (the output condition
of the original Q). The symbolic execution
of this statement proceeds according to the
previous definition. While the execution
follows the same exact rules, one may need
to generalize his understanding of the
ASSUME statement and the pc. Changes
to the pc previously were a refinement
(constriction) of the case being considered.
The execution of this ASSUME statement
causes, rather, an elaboration. The abbrevi-

ated symbolic execution had just previously
set all the variables, potentially receiving
new values within the procedure, to new
symbolic values. The execution of the AS-
SUME statement, in updating the pc, now
constrains those new symbols to the case
where they satisfy the output assertions of
the subprocedure. That is, they now repre-
sent the subprocedure changes as char-
acterized by its output assertions.

Control now returns to the calling pro-
cedure P. The new symbols invented within
Q will become values for variables of P
returned from Q and, in the case of function
procedures, as the return value. The sym-
bolic execution of P continues as before.
Whenever "knowledge" of the properties of
the new symbols is required as in the execu-
tion of subsequent PROVE statements, it is
available in the pc.

Note that the primed variables occur-
ring in the procedure's output assertions
have as their values the original input values
to the procedure. They are not affected by
the assignments of new symbols. In general,
after the symbolic execution of the abbrevi-
ated procedure, the pc contains expressions
relating the procedure inputs (the symbolic
expression values of the primed variables)
to the procedure outputs (the newly in-
vented symbols). Note also that the sym-
bolic execution of the abbreviated procedure
involves no loops and no cuts and can be
considered as one basic step in the symbolic
execution of the calling procedure. The sym-
bolic execution of abbreviated procedures
involves the new notions of:

Computing Surveys, Vol. 8, No 3, September 1976

An Introduction to Proving the Correctness of Programs • 349

cut

~ pc: trae, M: p , N : u , A: a , B : ~ , O:8

~ p c (a , ~ ') f f i (p , u) & a ~/~

' r mvoke ABSOLUTE

/X
r x : a - B

verified (~,we)

z,x
I X: ,, (from NEWSYMBOL)

Y: r (from NEWSYMBOL)

,~pc (a,B)-(/.L,z,) & a e ~ &
i (r - a - B l ' r - , 8 - a) & r > o & o ' - a - B

J. return V

pc (a , , 8) f (p . , u) & a >,8 &
T f a - B & c, f f i a - O /

D: T

pc' (a , ~) - (p.,v) & a < 0 &

A: T B: T

p~- '~pc : (a , B) - (p . ,v) & a > 0 &

true// fa~e~ v = a - B & r f ~ & c r - a - ~ / tree

verified
(r = (/~ , u))

pc (a , B) - (p . ,v) & a < 0
\ ' c - B - a H a - r &
X ~ - a - 0

(13") verified
x ~ , (a - (t,,v))

//pc (a , ~) - (p , ~) & a > O &
r f f i a - B & r , I / / & c r f f i a - B

[~ verified
t , J (T , ~) - (/ ~ , v) & T ~,/~
cut 7 cut 7

return a

pc (a , f ~) f (p , u) & a < 0 &
T f f ~ - a & a ~ T & q f f i a - 0

verified
(a , r) f (p , u) & a ~ T

FIGURE 12. Cut tree for cut7 of GCDZ (using abbreviated ABSOLUTE).

Computing Surveys, VoL 8, No. 3, September 1976

350 • S .L . Hantler and J. C. King

1) The function NEWSYMBOL for gen-
erating unique new symbols;

2) The remark that the correctness of the
program is contingent on all executions of
the PROVE statement printing "verified,"
including the ones which check the pro-
cedure inputs. Those do not occur at a cut
as do the others and could be overlooked.

Of course, one does not have to explicitly
create an abbreviated procedure but can
simply cause the equivalent effects to occur
at the procedure invocation.

The definitions given here imply that the
output assertions for the subprocedures must
include statements of the form X = X'
for all variables X which the procedure
could alter but, in fact, does not. Of course,
such statements would be confirmed during
the proof of the procedure itself and are
therefore dependable. Thus, for procedures,
the output assertions must not only include
statements about what the procedure does
but also statements about what it does not
do (e.g., does not change X). If the pro-
gramming language itself provides for, and
guarantees, the "read-only" nature of some
arguments, the statements, X = X' are un-
necessary for those parameter variables. In
that case, one must also change the defini-
tion of abbreviated procedures at step 3
to avoid overwriting these variables with
new symbols.

The presence of read-only arguments does
eliminate one minor notational nuisance of
the method as we describe it. The values of
unchanged variables get renamed at each
procedure invocation. For example, suppose

1 EXCHANGE:
PROCEDURE (X, Y) ;

2 DECLARE X, Y INTEGER;
3 ASSUME (true) ;
4 X + - - X - Y;
5 Y + - - X + Y;
6 X , - - - Y - - X ;
7 PROVE (X -- Y') & (Y = X'));
8 RETURN;
9 END:

X is an argument to a procedure and has
the value a. Suppose that the subprocedure
denotes that parameter by Y and includes
Y = Y' in its output assertion. Suppose
further that the new symbol invented for Y
during the abbreviated execution is ~. Then
the effect for the calling procedure over the
subprocedure's execution is that X will
change from a to ~, but the pc will include
a = ~. With known read-only variables
built into the language, X would simply
maintain the value a throughout and
would not even be generated.

One feature of the simple language defined
and used here causes some problems in
proofs involving subprocedures. Consider the
procedure shown in Figure 13 which ex-
changes the values of its two arguments
without use of a temporary variable. Its
proof of correctness by the method described
is quite straightforward. However, if it is
called using the same argument for both
formal parameters as in:

CALL EXCHANGE(Z, Z) ;

it has the same effect as:

Z ~ - - Z - Z ;
Z + - - Z + Z ;
Z + - Z - Z ; '

which results in setting Z to zero. (Re-
member that we have assumed a "call-by-
reference" definition like that found in
PL / I and FORTRAN.) In this case the output
assertion is certainly not satisfied. But what
about the alleged proof? At the beginning of
each cut execution used in the proof, each

FIa%ra~ 13. P r o c e d u r e EXCHANGE

Computing Surveys. Vol. 8. No. 3, September 1976

An Introduction to Proving the Correctness of Programs • 351

procedure variable is initialized to a unique
symbolic value independently and assuming
they are distinct variables. This results in a
proof of correctness which only holds for
procedure invocations involving distinct
arguments.

There are two solutions to this problem.
One is to disallow procedure invocations
which use the same argument variable in
more than one parameter position (at least
those which are not read-only within the
subprocedure). The other is to extend the
proof method to handle such cases cor-
rectly. If one considers the form of the CALL
while performing the proof of correctness,
the method is easily extended. For the pro-
cedure EXCHANGE there are only two
cases, represented by:

1) CALLEXCHANGE(Z, W);
2) CALL EXCHANGE(Z, Z);

For each case the symbolic executions need
be faithful to the rules used in the regular
executions. That is, case 2 would treat X
and Y as the same variable. The proof of
that case would then fail since the final
value of Z would be zero. One would then
know that this procedure has not been
proved correct for calls of the second form,
which must be disallowed. The more typical
exchange program involving a temporary
variable (e.g., with body T *-- X; X *-- Y;
Y ~- T) can be proved correct with respect
to the given input/output assertions for
both forms of calls.

For procedures with many parameters,
the number of combinations in which two or
more arguments may be coincident is quite
large. So one might prove the program is
correct for the favored case of no coinci-
dence, and then prove only the forms of
coincidence which are needed for the higher-
level program proofs.

6. PROBLEMS

Much of the work in performing a proof of
correctness of a program is tedious and
error prone. Considerable research has been

done in attempting to get the computer
itself to construct or at least to assist in
the construction of program proofs [2, 5, 8,
11, 14, 17, 20, 21]. In fact, the method of
proof presented here was developed first by
Deutsch [5] for his automated program veri-
fier. In this section, a brief summary of the
difficulties in constructing program proofs
is given. Some of the problems become exag-
gerated when one tries to automate the
process.

Some effort has gone into developing
programming languages in which proofs of
correctness are easier [9, 10]. In pursuing
this goal one must realize the inherent limi-
tations. A programming language is a
medium in which to describe algorithms,
perhaps algorithms of a certain type, or
which operate on certain data. That medium
can encourage obscure descriptions of al-
gorithms and make formal analysis difficult
or impossible by providing clumsy, overly
general, and ill-defined features. However,
the reason an algorithm performs a desired
computation correctly is independent of the
notation in which it is described. For ex-
ample, the fact that the simplex algorithm
can be used to optimize linear functions
subject to a set of linear constraints is based
on significant mathematical theory. With-
out that theory, or without rediscovering it,
the most elegant simplex algorithm written
in the perfect programming language cannot
be proved correct.

The proof method based on symbolic exe-
cution is appealing because it is an extension
of the notion of normal program execution.
One can often devise the "proper" proof
technique for a class of language constructs
by considering their behavior under regular
execution. The implementation of a program
verifier on a computer, based on symbolic
execution, closely follows that of an in-
terpreter for the language.

Much recent work [3, 19, 23] has been
concerned with programs that manipulate
complex data structures (e.g., list struc-
tures). The difficulty with such programs

Computing Surveys, Vol. 8, No, 3. September 1976

352 S. L. Hantler and J. C. King

appears to be the lack of an established no-
tation, manipulative techniques, and known
results concerning data structures. The
simple mathematical model of variable and
value is complicated by the introduction of,
what corresponds to in one form or another,
computer storage cells. Variables refer to
storage which contains values, and the as-
sociations between these (variables, storage,
values) are changed by the program execu-
tion.

Closely related to the data structure prob-
lem is the problem of developing a general,
flexible, easy-to-read specification language.
A program is proved correct with respect to
its input/output assertions. The examples in
this presentation were chosen for the ease
with which their input/output assertions
could be expressed.

A major area of concern in implementing
program verifiers on a computer is providing
the formula manipulation and theorem
proving power required. The symbolic exe-
cution of programs requires an efficient and
comprehensive formula manipulation sys-
tem. Each execution of a PROVE statement
requires establishing the truth of a formula
of arbitrary complexity. Program proving
has spurred work on efficient, domain-
dependent computer theorem provers.

The last major problem area discussed is
that of composing inductive assertions. The
input/output assertions which a programmer
must supply axe often difficult to determine.
However, the need for such input/output
assertions does not seem artificial; a pro-
grammer must somehow express what the
program was intended to do. The necessary
inclusion of inductive assertions which cut
the loops in the program does seem arti-
ficial. These are required not so much to
specify the program properties but as an
inductive assistance to the program proving
method. One can pose the generation of the
inductive assertions as a theorem proving
problem by formulating one large theorem
for the complete program of the form:
show that there exist inductive assertions

P1, P2, • • •, Pn such that all of the expres-
sions resulting from PROVE statements are
true. In general, this is a very difficult theo-
rem to prove. For simple programs, induc-
tive assertions can be generated automati-
cally and some exploration into their auto-
matic generation and/or enhancement for
larger programs using heuristic methods is
reported in [12, 22].

SUMMARY

This paper attempts to give a basic intro-
duction to the fascinating world of proving
that computer programs meet their speci-
fications. One style of producing program
specifications, in the form of input/output
assertions, was introduced to allow a defini-
tion of a "correct program." Then the sym-
bolic execution of programs was explained
as one way of establishing the consistency
between the program's code and its input/
output assertions.

Note that, among all the program speci-
fication methods and program proof meth-
ods which have been proposed and de-
veloped, we have presented a very narrow
glimpse of one. I t is the most intuitive ap-
proach of which we know and, therefore,
one of the most likely candidates for produc-
tive future development and use.

ACKNOWLEDGMENTS

Many of the ideas presented here were the out-
growth of our work with Jerry Archibald, Steve
Chase, Ahmed Chibib, Claus Correll, and John
Darringer on the EFFIGY system [15].

REFERENCES

[1] BOYER, R. S.; ELSPAS, B.; AND LEVITT,
K. N. "SELECT--A formal system for
testing and debugging programs by sym-
bolic execution," Inlernatl. Conf. on Reliable
Software, 1975, ACM, New York, 1975,
pp. 234-245.

[2] BOYER, R. S.; AND MOORE, J .S . "Proving
theorems about Lisp functions," J. ACM
22, 1, (Jan. 1975), 48-59.

[3] BURSTALL, R. M. "Some techniques for
proving correctness of programs whmh alter
data structures," Machine ~ntelligence 7,
D. Michie (Ed.), American Elsevier, New
York, 1972.

Computing Surveys, Vol. 8, No. 3, September 1976

A n Introduct ion to Proving the Correctness of Programs 353

[4] CLARKE, LORI, A system to generate test
data and symbolically execute programs,
Report $CU-CS-060-75, Univ. of Colorado,
1975.

[5] DEUTSCH, L. P. "An interactive program
verifier," PhD Dissertation, Dept. Com-
puter Science, Univ. of Calif., Berkeley,
1973, Xerox PARC Report CSL-73-1, Palo
Alto, Calif.

[6] ELSPAS, B. et al., "An assessment of tech-
niques for proving program correctness,"
Computing Surveys 4, 2 (June 1972), 97-147.

[7] FLora), R. W. "Assigning meanings to
programs," in Proc. Symposium Applied
Math., Vol. 19, American Mathematical
Society, Providence, R.I., 1967, pp. 19-32.

[SJ GOOD, D. I.; LONDON, R. L ; AND BLEDSOE,
W . W . "An interactive program verifica-
tion system," IEEE Trans. on Software
Engineering 1, 1, (April 1975), 59-67.

[9] GooD, D. I.; AND RAGLAND, L. C. "Nu-
cleus--a language of provable programs,"
in Program test methods, W. Hetzel (Ed.),
Prentice-Hall Inc., Englewood Cliffs, N.J.,
1973, pp. 93-117.

[10] HOARE, C. A. R.; AND WIRTH, N. "An
axiomatic definition of the programming
language PASCAL," Acta Informatzca 2,
(1973), 335-355.

[11] IGARASHI, S.; LONDON, R. L.; AND LUCKHAM,
D. C. "Automatic program verification I:
a logical basis and its implementation,"
Acta Informat~ca 4, (1975), 145-182. Also in
USC Information Sciences Insti tute Report
ISI/RR-73-11, May 1973.

[12] KATZ, S. M.; AND MANNA, Z. "A heuristic
approach to program verification," in Proc.
Third Internatl. Joint Conf. on Artzficial
Intelligence, SRI Publications Dept. Stan-
ford Calif., 1973, pp. 500-512.

]13] KINO, J . C . "Proving programs to be cor-

rect," IEEE Trans on Computers C-20, 11,
(Nov. 1971), 1331-1336.

[14] KING, J. C. "A program verifier," PhD
Dissertation, Carnegie-Mellon Univ., Pit ts-
burgh, Pa., 1969.

[15] KING, J. C. "A new approach to program
testing," in Internatl. Conf. on Reliable
Software, 1975, ACM, New York, 1975, pp.
228-233. Also appears in Programming meth-
odology, lecture notes in computer science, 23,
Springer-Verlag Inc., New York, 1974, pp.
278-290.

[16] KINa, J. C. "Symbolic execution and
program testing," Comm. ACM 19, 7, (July
1976), 385-394.

[17] LONDON, R . L . "The current state of prov-
ing programs correct," in Proc. of ACM
Annual Conf, 1972, ACM, New York, 1972,
pp. 39-46.

[18] IVIANNA, Z. Mathematical theory of computa-
twn, McGraw-Hill Book Co., New York,
1974.

[19] OPPEN, D. C.; AND COOK, S . A . "Proving
assertions about programs that manipulate
data structures," in Seventh Annual ACM
Symposium on Theory of Computation, 1975,
ACM, New York, 1975, pp. 107-116.

[20] SUZUKI, N. "Automatic program verifi-
cation II verifying programs by algebraic
and logical reduction," in Internatl. Conf.
on Reliable Software, 1975, ACM, New York,
1975, pp. 473-481.

[21] TOPOR, R .W. "Interactive program verifi-
cation using vir tualprograms," PhD Disser-
tation, Univ. of Edinburgh, Edinburgh,
Scotland, 1975.

[22] WEGBREIT, B. "The synthesis of loop
predicates," Comm. ACM 17, 2, (Feb. 1974),
102-112.

[23] WEGBREIT, B.; AND SPITZEN, J . M . "Prov-
ing properties of complex data structures,"
J. ACM 23, 2 (April 1976), 389-396.

Computing Surveys, Vol. 8, No. 3, September 1976

