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This paper explains, in an introductory fashion, the method of specifying the 
correct behavior of a program by the use of input/output  assertions and describes 
one method for showing that  the program is correct with respect to those assertions. 
An initial assertion characterizes conditions expected to be true upon entry to the 
program and a final assertion characterizes conditions expected to be true upon 
exit from the program. When a program contains no branches, a technique known 
as symbolic execution can be used to show that  the truth of the initial assertion 
upon entry guarantees the truth of the final assertion upon exit. More generally, 
for a program with branches one can define a symbolic execution tree. If there is an 
upper bound on the number of times each loop in such a program may be executed, 
a proof of correctness can be given by a simple traversal of the (finite) symbolic 
execution tree. 

However, for most programs, no fixed bound on the number of times each loop is 
executed exists and the corresponding symbolic execution trees are infinite. In order 
to prove the correctness of such programs, a more general assertion structure must 
be provided. The symbolic execution tree of such programs must be traversed 
inductively rather than explicitly. This leads naturally to the use of additional 
assertions which are called "inductive assertions." 
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INTRODUCTION 

I n t e r e s t  in ve r i fy ing  t h a t  c o m p u t e r  pro-  
g r a m s  b e h a v e  as t h e y  were  i n t e n d e d  to  
b e h a v e  has  exis ted  since t he  a d v e n t  of 
m o d e r n  e lect ronic  compute r s .  As  t h e  size 
a n d  complex i ty  of c o m p u t e r  p r o g r a m s  have  
increased ,  so has  t he  i m p o r t a n c e  of assur ing  
t h a t  these  p r o g r a m s  b e h a v e  re l iab ly .  N a t u -  
ra l ly ,  a t t e n t i o n  has  been  focused on the  
p r o b l e m  of spec i fy ing  prec ise ly  w h a t  con- 

s t i t u t e s  re l iab le  behav io r  and  on  deve lop ing  
a t h o r o u g h  m e t h o d  for  check ing  t h a t  a 
p r o g r a m  will  a lways  mee t  those  specifica- 
t ions .  

I t  is t h e  i n t e n t  of th i s  p a p e r  to  give a 

t u t o r i a l  p r e s e n t a t i o n  of one a p p r o a c h  for 

showing t h a t  a p r o g r a m  mee t s  i t s  specifi- 

ca t ion.  T h e  bas ic  a p p r o a c h  of us ing "cor-  

rec tness  asse r t ions"  a n d  t h e  p a r t i c u l a r  

fo rm of i n d u c t i o n  used  a re  due  to  F l o y d  
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[7]. The strategy explained in this paper for 
composing a proof is similar to methods 
developed by Deutsch [5] and Topor [21]. 
The presentation is informal; no theorems 
are stated or proved. For the person who 
understands what it means to execute a 
program and who understands simple alge- 
braic and mathematical concepts, the ideas 
presented here are quite straightforward. 
Rigorous presentations of similar material 
are available elsewhere [6, 13, 18]. 

We begin by defining a very simple 
programming language. Though simple, 
the language contains the important basic 
features of commonly used programming 
languages. All examples in the paper are 
written in this language, and in Section 2, 
the concept of correctness for programs 
written in the language is developed. The 
symbolic execution of programs is intro- 
duced in Section 3 as the basic tool for 
building correctness proofs. In Section 4 
the proof method is further developed for 
programs with looping structures. In order to 
show the generality of the technique, it is 

extended to handle subroutines and func- 
tions in Section 5. Finally, in Section 6, 
there is a discussion of the state of the art 
of program verification and its computer 
automation, with an emphasis on research 
into problems that remain unsolved. 

1. PROGRAMMING LANGUAGE AND 
SEMANTICS 

In this section we describe a simple pro- 
gramming language of a PL/ I  style, suit- 
able for introducing the notion of correct- 
ness. In order to facilitate the exposition 
and minimize the technical details, we choose 
a particularly simple language, with only 
basic statement types and simple arith- 
metic expressions. 

Procedures are declared by statements 
of the form: 

n a m e :  PROCEDURE (Pl, P2,  p 3 , .  • • , p n )  ; 

(statement-list~ 
END; 

where n a m e  is the procedure name and pl, 
p2, p s , . . . ,  pn are procedure parameters. 
As usual, the body of the procedure con- 
sists of a list of statements placed between 
the PROCEDURE and the corresponding 
END. There are two types of procedures: 
1) functions, which are referenced from 
within arithmetic expressions; and 2) sub- 
routines, which are invoked explicitly by a 
CALL statement. This distinction is dis- 
cussed in more detail later. 

Program variables are integer valued and 
are declared by the DECLARE statement. 
The statement 

DECLARE var iab le1 ,  var iab l e2 ,  . . , 

va r iab l en  INTEGER; 

creates integer valued variables named 
v a r i a b l e , ,  var iab le2 ,  . . . , va r iab l en .  These 
variables are known only within the pro- 
cedure in which they are declared and a 
"new" generation is created on each pro- 
cedure call (cf., PL / I  a u t o m a t i c  variables). 
Arithmetic operations on the values of 
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program variables yield new values. Values 
of program variables and integer constants 
may be added (-t-), multiplied (X), and 
subtracted ( - ) .  The basic assignment 
statement has the form: 

variable ¢--- (expression); 

where variable is a declared program vari- 
able and (expression) is an arithmetic ex- 
pression in declared variables, integer con- 
stants, and function names applied to the 
appropriate number of arguments. 

A function name occurring in the right- 
hand side of an assignment statement causes 
the function procedure associated with that 
name to be invoked. Thus if name is a pro- 
cedure with a single parameter which re- 
turns the value 7 when invoked with the 
argument 3, the result of executing 

variable ¢--- (2 X name(3))  ~ 4; 

is that the value of variable becomes 18. 
Statements may be grouped together into 

a compound statement by means of the 
DO; (statement-list) END; construct. When 
enclosed by the DO-END pair, the list of 
statements is treated as if it were a single 
statement. 

Boolean primitives are constructed from 
Boolean constants true and false and arith- 
metic expressions (as on the right side of 
assignment statements) connected by the re- 
lational operators: less than (<) ,  greater 
than (>) ,  equal (=) ,  and their comple- 
ments (~_, _<, ~) .  Boolean expressions 
(denoted by (Boolean) below) are con- 
structed using the Boolean primitives con- 
nected by: and (&), or (D, implies (--*), 
and not (7) .  The value of a Boolean ex- 
pression is either true or false. 

The binary conditional is of the form: 

IF (Boolean) THEN statement1 ELSE 
statement2 

where statementl and statement2 are state- 
ments or compound statements. As usual, 
either statement1 or statemente is executed, 
depending on the truth value of the (Boo- 
lean). 

The iterative statement is of the form: 

DO WHILE (Boolean); (statement-list) 
END; 

When control reaches the DO WHILE 
statement, if the value of the (Boolean) is 
true, the statement list is executed and 
control is returned to the DO WHILE 
statement. If the (Boolean) is false, control 
passes immediately to the statement fol- 
lowing the END statement. 

As mentioned above, function procedures 
are invoked by reference to the procedure 
name within an arithmetic expression. 
Parameters are passed exactly as described 
in the following discussion about subrou- 
tine procedures. In addition to the changes 
that may be effected through the parame- 
ters, function procedures return one special 
value to be used in the invoking expression 
evaluation. Subroutines are invoked and 
parameters are passed by means of the CALL 
statement. For example, the statement 

CALL name (al, as, a3 , . . . ,  an) ; 

causes the subroutine named name to be 
invoked and the names of the formal 
parameters pl, • • •, pn to be associated with 
the names of the actual arguments a l , . . . ,  
an, respectively. Parameter passing follows 
the PL/ I  "by reference" convention, i.e. 
references to the actual arguments are 
passed to the subroutine (or function). 
When an argument is an expression, its 
value is stored in a temporary storage loca- 
tion, a reference to which is passed to the 
subroutine. 

For convenience in referring to the initial 
values of the parameters of a procedure from 
within correctness assertions, the initial 
values of the parameters are stored in special 
procedure variables which are denoted by 
primed symbols. For example, after execu- 
tion of the CALL statement above, the 
values of a ~ , . . . ,  an upon entry to name are 
preserved in the variables p~', . . . , pn,, 
respectively. 

Return from an invoked procedure is 
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1 ABSOLUTE: 
PROCEDURE(X);  

3 DECLARE X, Y INTEGER; 
4 I F X  < 0  
5 THEN Y (-- - X ;  
6 ELSE Y ~ X; 
8 RETURN (Y) ; 
9 END; 

FmURE 1. Function procedure ABSOLUTE. 

achieved by means of the RETURN state- 
ment, which may appear at any place in a 
procedure. Each procedure has exactly one 
RETURN statement. A RETURN state- 
ment is of the form: 

RETURN; 

in a subroutine, and 

RETURN ((expression)); 

in a function. The latter statement returns 
the value of the (expression) as the value 
of the function. 

2. CORRECTNESS OF PROGRAMS 

Having defined a simple programming 
language in Section 1, we now discuss the 
meaning of "correctness" of procedures 
written in that language. We will provide a 
method for formalizing the intended be- 
havior of a procedure. In particular, con- 
straints on the inputs to a procedure and 
expected relations between inputs and out- 
puts will be expressed as assertions over the 
program variables. An input assertion is a 
statement of the form: 

ASSUME ((Boolean)); 

and usually appears immediately after the 
PROCEDURE statement. For example, the 
input assertion 

ASSUME (pl > 0); 

asserts that the value of the parameter p~ is 
assumed to be positive on procedure entry. 
An output assertion is a statement of the 
form: 

PROVE ((Boolean)); 

and usually appears immediately before the 
RETURN statement of a procedure. For 
example, the output assertion 

PROVE ((X = Y') & (Y -- X')); 

indicates that the values of the variables 
X and Y have been interchanged. Note 
that this is the relationship between inputs 
and outputs which would be satisfied by a 
correct interchange procedure. 

Naturally, the notion of "correctness" of 
a procedure should reflect this relation 
among the input assertion, output asser- 
tion, and procedure body. A procedure is said 
to be correct (with respect to its input and out- 
put assertions) if the truth of its input as- 
sertion upon procedure entry insures the 
truth of its output assertion upon procedure 
exit. Notice that the question of program 
termination is suppressed in this defini- 
tion. Intuitively, a procedure is correct 
provided that it behaves as expected when 
it terminates. This is often called "partial 
correctness," with the term "correctness" 
or "total correctness" reserved for pro- 
eedures that are partially correct and termi- 
nate for all inputs. 

A simple procedure is shown in Figure 1. 
The function ABSOLUTE is intended to 
return the absolute value of its parameter. 
Inasmuch as no assumptions need be made 
about the input parameter to ABSOLUTE, 
the input assertion should be ASSUME 
(true). The output assertion must specify 
that, when the RETURN statement is 
executed, the value of the procedure vari- 
able Y is the absolute value of the initial 
value of the parameter X. Thus, an ap- 
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propriate output assertion (among others), 
describing what this procedure does, is 
PROVE ( (Y = X ' [  Y = - -X' )  & Y > 0). 
We will see later, that it is often important 
to specify what a procedure does not do, 
as well as what a procedure does. A more 
complete output assertion, specifying that 
the value of X is unchanged by the pro- 
cedure ABSOLUTE, is PROVE ((Y = 
X' I  Y = - X ' )  & Y >_ 0 & X = X').  

The procedure, with correctness as- 
sertions, would then be as shown in Figure 2. 
In this simple example, it is quite clear that 
the procedure is correct. In the next section 
we discuss a formal method of proving that 
procedures (with input and output asser- 
tions) are correct. 

3. SYMBOLIC EXECUTION AND SYMBOLIC 
EXECUTION TREES 

A proof of correctness for a program is a 
proof over all program inputs. Certainly 
such a proof cannot, in general, be made 
using any finite (small) collection of specific 
inputs, but must be made with statements 
about all inputs. One can use a standard 
mathematical technique of inventing sym- 
bols to represent arbitrary program inputs, 
and then attempt a proof involving those 
symbols. If no special properties of the 
symbols, other than those expected to hold 
for all inputs, are necessary for the proof, 
then the proof is valid for each specific input. 
If special properties of the symbols must be 
assumed in order to construct a proof, then 

an exhaustive case analysis can be per- 
formed, providing a set of proofs, one for 
each case, which collectively give a com- 
plete proof. 

Let us naively attempt to apply this 
strategy to devise a correctness proof for 
the simple program ABSOLUTE of Figure 
2. A typical invocation of ABSOLUTE can 
be represented by using a symbolic argu- 
ment, say a: ABSOLUTE(a).  We proceed 
to execute the program using the symbol a 
as the input value of X. The ASSUME 
statement execution contributes nothing 
since its argument is true, which places no 
constraints on the input a. The execution of 
the IF statement is more interesting. Here 
one must determine if the value of X is 
negative; that is, if a < 0. If a stands for 
the integer 3 the answer is no, but if a is 
- 3  the answer is yes. To answer this ques- 
tion some assumption about the value of a 
must be made, and a case analysis is re- 
quired: 

Case 1: Assume a < 0. In this case the 
IF test would produce true and execution 
would proceed into the THEN clause. Here 
Y becomes the negative of the value of X, 
(i.e., - a). Arriving at the PROVE state- 
ment, one must show that, in this case, the 
present values satisfy ((Y ffi X' J Y ffi - X ' )  
& Y > 0 & X  ffi X').Since Y ffi - s a n d  
X = X' = a, this becomes 

( - a  = a l  - - a  ffi - - a ) & - - a > _ 0 ~ a  = a  

which simplifies to - a  > 0 or more simply 

1 ABSOLUTE: 
P R O C E D U R E  (X) ; 

2 A S S U M E  (true); 
3 D E C L A R E  X, Y I N T E G E R ;  
4 I F X < 0  
5 T H E N  Y *-- - - X ;  
6 ELSE Y +-  X;  
7 P R O V E ( ( Y  = X ' l  Y = - X ' )  & Y >  0 & X  = X');  
8 R E T U R N  (Y);  
9 END;  

FIOURE 2. Procedure ABSOLUTE w i t h  correctness assertions. 
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a _~ 0. Establishing the truth of the PROVE 
statement then reduces to showing a _~ 0. 
But we have assumed a < 0, so the proof 
is trivial. In the case a < 0, the program is 
correct. 

Case 2: Assume a >_ 0. In this case the 
IF test would produce false and execution 
would proceed into the ELSE clause. Here Y 
becomes the value of X or a. Arriving at the 
PROVE statement, one must show that 
((Y=X'i Y=-X')&Y_>O&X=X') 
is true, when Y = ~, X = X' = a. That is, 
to show that 

= = - - )  & -  > = . ,  

or simply a _> 0, is true. Again the proof is 
trivial since a > 0 was assumed. 

By the nature of the IF statement these 
two cases are exhaustive (either a < 0 or 
a ~ 0) and both yield correct results. 
Therefore the program is correct. 

Several points about this example should 
be made. The assumptions used in the case 
analysis resulted from an unresolved execu- 
tion of the IF statement. The assumptions 
were exactly the evaluated IF test and its 
negation and were Boolean valued expres- 
sions strictly over the input a. These as- 
sumptions were needed as hypotheses to 
establish the truth of the PROVE statement 
in each case. 

Symbolic Execution 

In this section we attempt to explain the 
basic "symbolic execution" technique used 
informally in the preceding example, more 
carefully and more completely. Within the 
scope of the programming language used 
here, consider the consequences of changing 
the underlying computation facilities of the 
language implementation (the program exe- 
cution mechanism) from doing arithmetic 
operations over integers to doing algebraic 
operations over symbolic expressions. For 
example, suppose that the variables X and 
Y have the symbols a and ~ as their respec- 
tive values. As a result of executing the 
statement X (-- Y + X the value of X 

becomes the formula a + ~. Executing 
Y *-- 3 X X - Y next, would symbolically 
calculate the formula 3 X a -F 2 X ~ as 
the new value of Y. 

Executing a program on a symbol manipu- 
lating machine one might hope to obtain 
algebraic formulas over the input symbols 
as the values of the output variables. Then, 
checking these results against the output 
assertion, one could establish the correct- 
ness, or incorrectness, of the program. As 
even the extremely elementary example, 
ABSOLUTE, shown above, demonstrates, 
this is not quite so simple. That example 
requires a case analysis, since Boolean ex- 
pressions involving symbols often do not 
simplify to true or false. For example, the 
truth of a > 0 is not determined without 
some information about a. However, sym- 
bolic execution does provide a complete 
way to establish program correctness when 
augmented by such case analyses and by a 
general inductive technique. Reconsider the 
definition of program execution given in 
Section 1, but assume that  programs re- 
ceive symbols or symbolic expressions as 
input and are executed on a machine cap- 
able of performing algebra. At procedure 
invocation (CALL or function reference), 
the transfer of control and the association of 
arguments to parameters work the same as 
before. Similarly the meaning of the RE- 
TURN statement is unchanged. 

The first construct where something more 
interesting occurs is the assignment state- 
ment. The usual execution first replaces all 
variables in the right-side expression by 
their values, then performs the indicated 
arithmetic and assigns the resulting value 
as a new value of the left-side variable. The 
symbolic execution performs the algebraic 
equivalent. The variables in the right-side 
expression are replaced by their values 
(parenthesized to maintain the proper scope 
of operators). Since the values of variables 
are formulas, the indicated arithmetic opera- 
tions cannot be done numerically but are 
simply represented symbolically, as in 
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algebra. The resulting symbolic expression 
becomes the new value of the left-side 
variable. 

When the arithmetic expression involves 
function calls the situation is more complex 
and is discussed in a later section dealing 
explicitly with procedure calls. There is 
also the issue of whether or not algebraic 
simplification should be performed on formu- 
las resulting from the substitution of values 
for variables in the right-side expression. 
If no simplification is done, the formu- 
las accurately characterize the exact compu- 
tations that would have taken place had the 
inputs been numbers. In fact, those compu- 
tations can be done later according to the 
formulas, getting the same results even with 
respect to overflow and other machine 
anomalies. 

However, no simplification implies that 
the formulas may become quite unwieldy. 
As we will see shortly, theorem proving over 
these expressions is required, and the diffi- 
culty is increased if the formulas are very 
complex. Since the objective of this paper is 
to present the basic ideas of proving correct- 
ness of programs as simply as possible, this 
difficult question will not be addressed. 
When convenient in examples, the formulas 
will be simplified. In theory, the basic ap- 
proach is valid whether or not the formulas 
are simplified. In the extreme, one must 
choose between very difficult theorem prov- 
ing and specification writing (in the case of 
no simplification), and results that, when 
simplified, may not accurately apply in all 
cases to an actual computer execution. 

The symbolic execution of conditional 
branching statements also parallels their 
normal execution but with additional com- 
plexity. Consider first the IF statement. Its 
symbolic execution begins by replacing all 
variables in its Boolean expression by their 
parenthesized values. The resulting expres- 
sion may be equivalent to true, false, or 
some Boolean expression over the symbolic 
program inputs. The last situation may 
result in a case analysis as it did in the 

ABSOLUTE example. Whenever the Bool- 
ean result is neither true nor false, there is at 
least one numeric program input for which 
the result is false and at least one other for 
which it is true. The execution cannot 
proceed into either the THEN clause or 
the ELSE clause and be valid for all inputs. 
Thus, the case analysis is required. 

Recall from the example that the assump- 
tions which determine the cases are needed 
later to establish the truth of the PROVE 
predicate. The assumptions are also needed 
to avoid considering impossible subeases 
that may arise at subsequent conditional 
statement executions. For example, con- 
sider the execution of the two successive IF 
statements: 

I F  X < 0 T H E N  Y ~-- 88; 
I F  X = 3 T H E N  Y ~-- 99; 

with the value of X -- a. There are four 
syntactic paths through these two state- 
ments, but only three are semantically 
possible. The impossible subcase can be 
detected if the conditions on a necessary to 
execute the choices of the first statement 
(i.e., ~ < 0, a ~_ 0) are remembered and 
used to determine consistent choices on the 
second statement. These observations lead to 
the notion of a "path condition," abbrevi- 
ated pc. I t  is a part of the symbolic execu- 
tion-state and takes as its value the condi- 
tions over the program's symbolic inputs 
that determine each case, subcase, sub-sub- 
case, etc. The pc is initialized to true at 
the beginning of a symbolic execution and is 
updated each time a new case is considered. 

The complete description of the symbolic 
execution of an IF statement of the form: 

IF (Boolean) THEN statement1 ELSE 
statement2 

is as follows: 

1) Evaluate the (Boolean) obtaining a 
value, B, over the symbolic inputs. 

2) Now decide if subcases for B and ~ B  
should be formed. If pc --~ B, new subcases 
are unnecessary since enough assumptions 
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have already been made (recorded in the 
pc) to determine that statement1 would 
always be executed next. The symbolic 
execution proceeds directly to statementl. 
Similarly if pc --* ~B,  the symbolic execu- 
tion proceeds directly to statement2. If 
neither (pc --* B) nor (pc --~ -~B), new 
subcases for B and -~B are required as 
described in steps 3 and 4, respectively. 

3) Establish a subcase assuming B. Up- 
date the pc with new conditions B by re- 
placing it by (pCold & B), where pCo~d is the 
most recent value of the pc (i.e., do the as- 
signment pc ~-- pc & B). In this case, the 
symbolic execution proceeds to statement~ 
with the revised pc. 

4) Establish a subcase assuming -aB. 
Update the pc with new conditions -~B by 
replacing it by (pCold & ~B).  In this case, 
the symbolic execution proceeds to state- 
ment2 with this revised pc. 

The case of an IF statement execution in 
which the evaluated Boolean reduces di- 
rectly to true or false falls out at step 2. 
Since the pc is never allowed to be false 
(an impossible path), then (pc --* true) is 
true and (pc --* false) is false for any pc. 

One can also define the symbolic execu- 
tion of the ASSUME and PROVE state- 
ments which specify the program's correct- 
ness as follows: 

ASSUME ((Boolean)) : 

1) Evaluate the (Boolean) by substi- 
tuting parenthesized values for variables. 
Call the result B. 

2) Update the pc to the value (pCold & B). 

This has the effect of confining the subse- 
quent symbolic execution to the case where 
the (Boolean) is true, which is the intention 
of the input assertion. 

PROVE ((Boolean)) : 

1) Evaluate the (Boolean) by substitut- 
ing parenthesized values for variables. Call 
the result B. 

2) If (pc --* B) print "verified" otherwise 
print "not verified." 

This statement prints "verified" or "not 
verified" depending on whether or not the 
program variable's values satisfy the output 
assertions in this case. The conditions de- 
fining this case are given by the pc. 

The complete symbolic execution of a 
program like ABSOLUTE of Figure 2 can 
be compactly represented by a "symbolic 
execution tree." The tree for that example is 
shown in Figure 3. I t  is similar to a program 
flowchart, with each statement execution 
being represented by a node, and a transfer 
of control between statement executions by 
an arc. The nodes are labeled with the 
program statement numbers, and the arcs 
leaving statements are labeled by the 
changes to the execution state, if any, 
caused by the execution of the preceding 
statement. Of course, a conditional state- 
ment execution node will have more than 
one arc leaving it when the choice of suc- 
cessor statement remains unresolved. Nodes 
for nonexecutable statements (e.g., DE- 
CLARE) are omitted from the trees shown 
here to conserve space. Since the tree of 
Figure 3 covers all possible executions of the 
program ABSOLUTE, in each case printing 
"verified," ABSOLUTE is correct. 

We have yet to discuss the symbolic 
execution of DO WHILE statements. 
Without them in our language there is no 
means for program looping, and non-looping 
programs always have finite symbolic exe- 
cution trees. As in the proof of the ABSO- 
L U T E  procedure, symbolic execution pro- 
vides a convenient way to prove the cor- 
rectness of procedures with finite symbolic 
execution trees. Such programs are correct 
provided that "verified" appears at each leaf 
of their symbolic execution trees. 

However, infinite symbolic execution 
trees may occur when their corresponding 
procedures contain the iterative DO WHILE 
statement of the form 

DO WHILE (Boolean); (statement-list) 
END; 

Its symbolic execution follows naturally 
from the symbolic execution of the IF state- 
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1 GCD: 
PROCEDURE (M, N); 

2 ASSUME (M > 0 & N > 0); 
3 DECLARE M, N, A, B INTEGER; 
4 A~---M; 
5 B~---N; 
6 DO WHILE (A # B); 
8 I F A > B  
9 THEN A <-- A - B; 

10 ELSE B ¢-- B -- A; 
11 END; 
12 PROVE (A = (M, N)); 
13 RETURN (A); 
14 END; 

FIGURE 4. Procedure G C D  with correctness assertions. 

ment. The decision to execute the statement 
list, go on to the statement following the 
END, or develop those choices as alterna- 
tive subcases is determined by examining 
the Boolean expression as was done for IF 
statements. 

An example of an infinite symbolic execu- 
tion tree is shown in Figure 5 for the pro- 
cedure of Figure 4. The procedure of Figure 
4 computes the greatest common divisor of 
its positive inputs M and N. The procedure's 
correctness is specified using the standard 
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mathematical notation where (M, N) 
stands for the greatest common divisor of 
M and N. For example, (3, 12) = 3, (20, 15) 
= 5, and (4, 4) = 4. Let a and b be integers. 
The greatest common divisor can be char- 
acterized by three axioms: 

(a,a) = a i f a  > 0, 
(a, b) = (b, a), 
(a, b) = (a + b, b). 

Note that the infinite portion of the tree, 
as shown in Figure 5, is caused by the in- 
finite sequence of unique conditions in- 
volving the symbolic inputs. 

A program which has an infinite symbolic 
execution tree may have no particular input 
which causes an infinite program execution. 
The symbolic execution tree is infinite 
because there is always yet another, differ- 
ent, execution which requires more state- 
ment executions. Of course, a program 
which has a nonterminating execution has 
an infinite symbolic execution tree. 

How can the method presented above be 
applied to programs which generate infinite 
symbolic execution trees? A general answer 
to this question is provided by using an 
inductive technique to "traverse" the in- 
finite paths. This is discussed at length in 
Section 4. Otherwise one can reduce the 
problem to the one already discussed by 
restricting attention to finite subtrees of 
infinite symbolic execution trees. Recall 
that symbolic execution actually furnishes a 
proof of correctness for procedures with 
finite symbolic execution trees. 

We illustrate this point by considering 
variants of the procedure GCD of Figure 4. 
Suppose, for instance, that we replace the 
initial ASSUME statement of that pro- 
cedure by ASSUME(false). The resulting 
procedure not only has a finite symbolic 
execution tree (in fact, an empty tree), but 
it is also guaranteed to be correct. Natu- 
rally, the empty subtree of an infinite 
symbolic execution tree is an extreme and 
uninteresting subtree to study. A better 
choice of subtree results from a more subtle 

restriction of the initial assertion of the 
program. 

Suppose that the initial ASSUME state- 
ment were modified to ASSUME (M > 0 
& N > 0 & M  = C X N & C  <_ 1000). 
We would then be restricting attention to 
that finite subtree of the GCD procedure 
corresponding to the case in which one of 
the variables is a small multiple of the 
other. Without inductive assistance of any 
kind, symbolic execution can provide a 
proof of correctness of this modified pro- 
cedure. 

Inasmuch as our principal interest is in 
the original GCD procedure rather than the 
modified procedure, it is perhaps better to 
think of the consideration of finite subtrees 
of an infinite symbolic execution tree as a 
form of testing. The finite subtrees represent 
the test cases of interest. Notice that test- 
ing using symbolic execution differs from 
more traditional testing techniques in at 
least two respects. First, ordinary testing 
covers at most a finite number of specific 
inputs, while testing by symbolic execution 
usually covers an infinite number of specific 
inputs. Second, when correctness assertions 
are supplied in procedures, symbolic testing 
provides a proof of correctness for the test 
cases being considered, rather than merely 
providing output values for each test case 
considered. 

As a testing technique, symbolic execu- 
tion appears to be an extremely promising 
new tool. It  is the topic of a recent PhD 
thesis by Clarke [4], and Boyer et al. [1] 
have explored the generation of test cases 
using symbolic execution. The authors and 
their colleagues have developed a prototype 
symbolic execution system called EFFmV 
[16] which includes features for program 
testing as well as for program proving. 

4. INFINITE SYMBOLIC EXECUTION TREES AND 
INDUCTION 

Programs contain a finite number of state- 
ments. Since the nodes on an infinite sym- 
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FIGVRE 5. Symbolic execution tree for procedure G C D .  

bolic execution tree are labeled by  program 
statements, some statement labels must 
occur an infinite number of times. Thus, the 
infinite portions of the symbolic execution 
tree are generated by looping in the program. 

In the case of our programming language the 
sole loop construct is the DO WHILE 
statement. 

Each loop traversal can be isolated by 
placing a "cut" (mark) at least once within 
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every loop. The induction to be described is 
valid even if a loop is cut more than once, 
so it is trivially possible to cut all loops by 
placing a cut between every two program 
statements. Generally one cuts each loop 
just once. In our language, the cuts can be 
made by placing a mark between each DO 
WHILE and its statement body. 

For simplicity in the subsequent discus- 
sion, consider that a cut has also been placed 
immediately after the PROCEDURE state- 
ment. Then imagine a symbolic execution of 
the program which begins at one of the 
cuts. Beginning at such an arbitrary point 
in a program, the "inputs" are, in fact, 
represented by the program state, so con- 
sider all program variables initialized to 
unique symbolic values, and the pc initialized 
to true. A symbolic execution, from this 
point on, is representative of all cases 
for which execution reaches the cut, inde- 
pendent of the values of the program vari- 
ables; the new unique symbolic values repre- 
sent all cases. The symbolic execution stops 
whenever any subsequent cut or the final 
program RETURN is encountered. Since 
each program loop has been cut, this sym- 
bolic execution will terminate in all cases 
and have a finite symbolic execution tree. 

Call each such symbolic execution start- 
ing at a cut a cut (symbolic) execution and 

the corresponding tree a cut (symbolic execu- 
tion) tree. If one were to place an ASSUME 
statement at a cut C and PROVE state- 
ments at each cut which terminates C's cut 
tree (the RETURN already has a PROVE 
just preceding it), the proof of correctness 
(with respect to those input/output asser- 
tions) for the cut execution of C can be 
discussed. Since the cut tree is finite, a 
proof as described in the previous section 
can always be attempted. If it succeeds, 
any execution which begins at the cut with 
values satisfying the cut input assertion is 
guaranteed to reach another cut and the 
program values at that point will satisfy 
the associated output assertion. 

The proof of correctness of the entire 
procedure can be constructed from proofs of 
the cut executions. What is needed are the 
input/output assertions hypothesized for 
each cut tree and an explicit argument for 
the composition of the overall proof from 
the pieces. One appropriate assertion as- 
sociated with each cut makes both possible. 
The word "appropriate" is used because 
these cut assertions (more commonly called 
"inductive assertions" or "inductive predi- 
cates") correspond to the inductive hy- 
pothesis in the usual proof by mathematical 
induction and are often quite difficult to 
discover. 

1 GCD: 
PROCEDURE (M, N); 

2 eut~--- ASSUME(M > 0 & N  > 0); 
3 DECLARE M, N, A, B INTEGER; 
4 A ( - - M ;  
5 B~--N;  
6 DO WHILE (A ~ B); 
7 cut7--- ASSERT ((A, B) = (M, N) & A ~ B); 
8 I F A > B  
9 THEN A *-- A -- B; 

10 ELSE B *- B -- A ; 
11 END; 
12 PROVE (A = (M, N)); 
13 return---RETURN (A); 
14 END; 

FIGURE 6. Procedure GCD with inductive assertion. 
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Suppose that by some "inductive genius" 
appropriate assertions are placed at each 
cut, except the first one, by use of a new 
statement of the form ASSERT ((Boolean)). 
Figure 6 shows the cuts and the inductive 
assertion for the GCD procedure of Figure 4. 
Two definitions for the symbolic execution 
of the ASSERT statement are supplied de- 
pending upon the context in which it is 
encountered. Refine the definition of cut 
execution such that the ASSERT statement 
is encountered as the first statement (just 
after the variables have all been set to 
unique symbols). (In this case, assume the 
actual cut-mark is placed just above the 
ASSERT statement.) When executing the 
ASSERT statement in this context, it is 
treated exactly as if it were an ASSUME 
statement; it supplies a cut execution input 
assertion. When each cut that terminates a 
cut execution is encountered, execute the 
associated ASSERT statement as if it 
were a PROVE statement. (In this context, 
assume the actual cut-mark is placed just 
below the ASSERT statement.) Note that 
one ASSERT statement can be treated as 
both an ASSUME statement and as a 
PROVE statement depending on the con- 
text. 

Special cases at the beginning (PRO- 
CEDURE) and at the end (RETURN) of 
the program are obvious but must be men- 
tioned. The initial cut after the PROCE- 
DURE statement is never encountered as a 
terminating cut and is followed immediately 
by the ASSUME statement for the overall 
program, so no ASSERT statement is 
needed. The input cut assertion, for paths 
starting at the initial cut, is provided by 
executing the program's ASSUME state- 
ment. Whenever a cut execution is termi- 
nated by the program RETURN statement, 
the program's original PROVE statement 
will have just been executed; so here too no 
ASSERT statement is needed. The result of 
the program's PROVE serves as the result 
for~f:he cut execution. 

The following claim for this proof of cor- 

rectness method is now easy to establish 
using an inductive argument. I f  inductive 
assertions can be placed at each cut (except the 
first) by means of ASSERT sSaSements such 
that the cut executions for all cuts are correct 
with respect to those assertions, then the pro- 
gram is correct. I f  such assertions do not exist, 
then the program is not correct. 

The proof of a cut execution establishes 
that for any set of values of the program 
variables that satisfy the cut input asser- 
tions (including those which result from an 
actual execution of the procedure to this 
point), the execution ultimately arrives at a 
subsequent cut and the associated output 
assertion is satisfied by the resulting values 
of the program variables. But since only one 
assertion has been associated with each cut, 
it is both the output assertion for all cut 
executions arriving at the cut and the 
input assertion for the cut execution leaving 
the cut. Any values which satisfy it as an 
output assertion also satisfy it as a subse- 
quent input assertion. 

For any particular program input which 
satisfies the program's input assertion, the 
values computed upon arrival at the next 
cut satisfy its associated cut assertion. But 
that, in turn, guarantees that the values 
computed upon arrival at the next cut 
satisfy its associated cut assertion. But the 
values computed upon arrival at the final 
program RETURN satisfy the program 
output assertion. Since a proof for any 
program input can be made from the cut 
proofs, the program is correct for all inputs. 
The program of Figure 6 has two cuts and 
therefore two cut executions. The cut trees 
for these two cut executions are shown in 
Figures 7 and 8. Since "verified" is printed 
at each leaf of these trees, the program is 
correct. 

5. PROCEDURES 

Any proof technique must be able to cope 
effectively with programs which call sub- 
routines and functions. (We will denote the 
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cut 2 

+ 
pc'true, M :  p ,  N:  v , A:  a , B: ~ 

pc: ~ > 0  & v > 0  

q~ 

pc- / z > O  & v > 0  & /z > 0  & v > 0  & p = v  

(p= (t~,v)) 

cut 7 ] ~  return ((/~,v,)==(t,,,v) &~.#v)  

FIGURE 7. Cut tree for cut~ of GCD. 

subroutines and functions, subprocedures.) 
The notion of symbolic execution naturally 
extends to such calls, which involve transfer 
of control (with provision for return), some 
reassociation of variables and values and 
the creation/destruction of local procedure 
variables. All these operations remain con- 
ceptually the same whether the values of 
variables are symbolic formulas or num- 
bers. A symbolic execution tree for a sym- 
bolic program execution including pro- 
cedure calls is also conceivable, as is a proof 
of correctness as already presented. Con- 
sider the revised greatest common divisor 
procedure called GCD2 shown in Figure 9. 
I t  has been modified so as to call the 
ABSOLUTE procedure of Figure 1. The 
cut execution for cut2 is identical to that of 
Figure 7 for procedure GCD. The cut execu- 
tion for cut7 is shown in Figure 10. The sym- 
bolic execution "executes into" the pro- 
cedure ABSOLUTE. The nodes in the tree 

resulting from executing statements in 
ABSOLUTE are denoted by triangles to 
distinguish them from those of GCD$. 

However, this method requires one to 
"start from scratch" with every proof, re- 
proving properties of each subprocedure at 
each invocation. A method which allows 
one to prove a procedure is correct and then 
use this proof as a lemma in the proof for a 
calling procedure is needed. Such a method 
is described next. 

Once a procedure (subprocedure) has 
been proved to be correct with respect to 
some input/output assertion pair, two con- 
sistent sources of information about that 
procedure's behavior exist: 1) The pro- 
cedure itself as an executable algorithm (the 
procedure's codebody); and 2) properties 
proved correct as described in the input/  
output assertions. 

There are two important points to note 
about the program characterization pro- 
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cut 7 
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FIGVaE 8. Cut tree 

vided by the input/output assertions: 
1) They do not necessarily characterize 

everything the program does, but just some 
of the effects. Any program is correct with 
respect to the output assertion true which 
states nothing about the results. The output 
assertion is supplied by the programmer and 
includes only what he feels is important. 

2) The information is not generally a 
description of how to compute the results, 
but rather a description of properties which 
the results satisfy. The output assertion on 
the program of Figure 2 ((Y = X '  I Y = 
--X') & Y > 0 & X -- X') does not de- 
scribe how to calculate such a value for Y. 
The input/output assertions are more usable 

fetorR 

(a,/3)f(p,v) & a<~  & a ~ B - a  

verified 

((a,/3-a)ffi(p,v) & a # / 3 - a )  

for cut7 of GCD. 

in a correctness proof for a calling procedure, 
than the subprocedure codebody since they 
do not involve the dynamics of how to calcu- 
late the procedure results but simply de- 
scribe them. 

The basic approach for dealing with sub- 
procedures appeals to the same idea as does 
the main technique: use symbols to represent 
arbitrary values of program variables. The 
effect of executing a procedure is the altera- 
tion of some of the values of the calling 
procedure's variables and, in the case of a 
function call, the additional effect of re- 
turning a value for the function. New unique 
symbols are invented, one for each variable 
of the calling procedure which could have 
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1 GCD~: 
PROCEDURE (M, N); 

2 cut2--- A S S U M E ( M > 0 & N > 0 ) ;  
3 DECLARE M, N, A, B, D INTEGER; 
4 A~---M; 
5 B * - - N ;  
6 DO WHILE (A # B); 
7 cutT--- ASSERT ((A, B) = (M, N) & A # B); 
8 D ~ ABSOLUTE(A - B); 
9 I F A > B  

10 THEN A ~ D; 
11 ELSE B *- D; 
12 END; 
13 PROVE (A = (M, N)); 
14 return.--RETURN (A); 
15 END; 

FIGURE 9. GCD$ procedure which calls ABSOLUTE. 

had its value altered by the procedure call. 
Instead of symbolically executing the pro- 
cedure codebody, the values of the potenti- 
ally affected calling program's variables are 
replaced by these new symbols. If the sub- 
procedure has been proved correct, its output 
assertion holds for these new values and 
provides the information about these values 
needed for the proof. 

The complete process can be explained 
precisely as the normal symbolic execution 
of an "abbreviated procedure" which is 
derived simply from the original subpro- 
cedure as follows: 

1) Change the procedure's initial AS- 
SUME statement to a PROVE statement, 
leaving its argument unchanged. 

2) Change the procedure's final PROVE 
statement to an ASSUME statement, leav- 
ing its argument unchanged. 

3) Replace the complete code body of the 
procedure by a sequence of assignment 
statements, one for each variable which can 
be altered by the procedure, of the form: 

v, *-- NEWSYMBOL; 

The built-in function NEWSYMBOL is 
defined to return as its value a new symbolic 
value each time it is called. 

The abbreviated procedure for the pro- 
cedure ABSOLUTE of Figure 2 is shown in 
Figure 11. 

Consider a program P which makes ref- 
rence (either by CALLs or by function 
references) to procedures QI, Q2, • • • , Qn. 
Assume that each procedure Qi has been 
proved correct with respect to its ASSUME/ 
PROVE statements. Replace each pro- 
cedure Qi by its abbreviated procedure. 
Suppose that P has ASSUME/PROVE 
statements and that each loop of P has 
been cut by an ASSERT statement. A 
proof of correctness of P, with respect to 
its input/output assertions, under the as- 
sumption of the correctness of the pro- 
eedures Qi, proceeds just as described be- 
fore in Sections 3 and 4. The cut execution 
for cut~ from GCD~ of Figure 9, using the 
abbreviated procedure of Figure 11, is 
shown in Figure 12. The cut execution for 
cuts remains the same as before and is shown 
in Figure 7. These two cut executions es- 
tablish the correctness of the procedure 
GCD~. 

Whenever an invocation of a procedure 
occurs during the symbolic execution of 
paths of P, the abbreviated procedure is 
invoked. Suppose Q is such an abbreviated 
procedure. The proof of Q assures one that 
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FIGURE 10. C u t  t r e e  f o r  c u b  of  G C D ~ .  

ASSUME to PROVE) provides the simple 
key to accomplishing this check. The. sym- 
bolic execution into the abbreviated pro- 
cedure up to and including the PROVE 
statement accomplishes the check in each 
case. A PROVE statement is defined to 
print "verified" or "not verified" depending 
upon whether or not its associated predi- 

if the initial input assertion of Q is satisfied 
by the values of the variables at its invoca- 
tion, the output assertion will be satisfied 
by the values at the RETURN. Therefore, 
one must now show that the values input 
to this invocation satisfy Q's original AS- 
SUME statement. The first step in creating 
the abbreviated procedure (i.e., changing 

Computing Surveys, Vol. 8, No. 3, September 1976 



348 • S .L .  Hantler and J. C. King 

1 ABSOLUTE: 
PROCEDURE (X) ; 

2 PROVE (true) ; 
3 DECLARE X, Y INTEGER;  
4 X ~-- N E W S Y M B O L ;  
5 Y ~-- N E W S Y M B O L ;  
6 A S S U M E  ((Y = X'h Y = - -X' )  & Y >_ 0 & X = X');  
7 R E T U R N  (Y); 
8 END; 

FIGURE 11. A b b r e v i a t e d  p r o c e d u r e  A B S O L U T E .  

cate is true. It  should be noted that the pc 
(used by the PROVE statement) is con- 
sidered as part of the underlying (symbolic) 
machine state, describing conditions over 
the symbolic constants. It  does not relate to 
program variables and therefore is unaf- 
fected by the procedure invocation and has a 
global scope across the complete program 
execution. 

If the execution of any PROVE state- 
ment results in "not verified," the proof of 
correctness fails. This includes the execution 
of the PROVE statement just discussed. 
If it does not hold, the output assertion of 
the procedure cannot be guaranteed to 
hold and its use would be invalid. 

Next the symbolic execution of the ab- 
breviated procedure Q would reset all vari- 
ables accessible to Q to new unique symbols. 
These represent the new values the pro- 
cedure Q would compute in an actual execu- 
tion. In the case that Q is a function, one 
of these new symbols, being the value of the 
RETURN statement, would also subse- 
quently be returned as the function's value. 
The abbreviated procedure next contains an 
ASSUME statement (the output condition 
of the original Q). The symbolic execution 
of this statement proceeds according to the 
previous definition. While the execution 
follows the same exact rules, one may need 
to generalize his understanding of the 
ASSUME statement and the pc. Changes 
to the pc previously were a refinement 
(constriction) of the case being considered. 
The execution of this ASSUME statement 
causes, rather, an elaboration. The abbrevi- 

ated symbolic execution had just previously 
set all the variables, potentially receiving 
new values within the procedure, to new 
symbolic values. The execution of the AS- 
SUME statement, in updating the pc, now 
constrains those new symbols to the case 
where they satisfy the output assertions of 
the subprocedure. That is, they now repre- 
sent the subprocedure changes as char- 
acterized by its output assertions. 

Control now returns to the calling pro- 
cedure P. The new symbols invented within 
Q will become values for variables of P 
returned from Q and, in the case of function 
procedures, as the return value. The sym- 
bolic execution of P continues as before. 
Whenever "knowledge" of the properties of 
the new symbols is required as in the execu- 
tion of subsequent PROVE statements, it is 
available in the pc. 

Note that the primed variables occur- 
ring in the procedure's output assertions 
have as their values the original input values 
to the procedure. They are not affected by 
the assignments of new symbols. In general, 
after the symbolic execution of the abbrevi- 
ated procedure, the pc contains expressions 
relating the procedure inputs (the symbolic 
expression values of the primed variables) 
to the procedure outputs (the newly in- 
vented symbols). Note also that the sym- 
bolic execution of the abbreviated procedure 
involves no loops and no cuts and can be 
considered as one basic step in the symbolic 
execution of the calling procedure. The sym- 
bolic execution of abbreviated procedures 
involves the new notions of: 
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\ ' c - B - a  H a - r &  
X ~ - a  - 0  

(13") verified 
x ~ ,  (a - (t,,v)) 

//pc ( a , ~ )  - ( p , ~ )  & a > O  & 
r f f i a - B & r , I / / & c r f f i a - B  

[ ~  verified 
t , J ( T , ~ ) - ( / ~ , v )  & T ~,/~ 
cut 7 cut 7 

return a 

pc ( a , f ~ ) f ( p , u ) &  a < 0 &  
T f f ~ - a  & a ~ T  & q f f i a - 0  

verified 
( a , r ) f ( p , u )  & a ~ T  

FIGURE 12. Cut tree for cut7 of GCDZ (using abbreviated ABSOLUTE). 
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1) The function NEWSYMBOL for gen- 
erating unique new symbols; 

2) The remark that the correctness of the 
program is contingent on all executions of 
the PROVE statement printing "verified," 
including the ones which check the pro- 
cedure inputs. Those do not occur at a cut 
as do the others and could be overlooked. 

Of course, one does not have to explicitly 
create an abbreviated procedure but  can 
simply cause the equivalent effects to occur 
at the procedure invocation. 

The definitions given here imply that the 
output assertions for the subprocedures must 
include statements of the form X = X' 
for all variables X which the procedure 
could alter but, in fact, does not. Of course, 
such statements would be confirmed during 
the proof of the procedure itself and are 
therefore dependable. Thus, for procedures, 
the output assertions must not only include 
statements about what the procedure does 
but  also statements about what it does not 
do (e.g., does not change X). If the pro- 
gramming language itself provides for, and 
guarantees, the "read-only" nature of some 
arguments, the statements, X = X'  are un- 
necessary for those parameter variables. In 
that case, one must also change the defini- 
tion of abbreviated procedures at step 3 
to avoid overwriting these variables with 
new symbols. 

The presence of read-only arguments does 
eliminate one minor notational nuisance of 
the method as we describe it. The values of 
unchanged variables get renamed at each 
procedure invocation. For example, suppose 

1 EXCHANGE: 
PROCEDURE (X, Y) ; 

2 DECLARE X, Y INTEGER; 
3 ASSUME (true) ; 
4 X + - - X -  Y; 
5 Y + - - X  + Y; 
6 X , - - - Y - - X ;  
7 PROVE (X -- Y') & (Y = X')); 
8 RETURN; 
9 END: 

X is an argument to a procedure and has 
the value a. Suppose that the subprocedure 
denotes that parameter by Y and includes 
Y = Y' in its output assertion. Suppose 
further that the new symbol invented for Y 
during the abbreviated execution is ~. Then 
the effect for the calling procedure over the 
subprocedure's execution is that X will 
change from a to ~, but the pc will include 
a = ~. With known read-only variables 
built into the language, X would simply 
maintain the value a throughout and 
would not even be generated. 

One feature of the simple language defined 
and used here causes some problems in 
proofs involving subprocedures. Consider the 
procedure shown in Figure 13 which ex- 
changes the values of its two arguments 
without use of a temporary variable. Its 
proof of correctness by the method described 
is quite straightforward. However, if it is 
called using the same argument for both 
formal parameters as in: 

CALL EXCHANGE(Z,  Z) ; 

it has the same effect as: 

Z ~ - - Z - Z ;  
Z + - - Z + Z ;  
Z + - Z - Z ; '  

which results in setting Z to zero. (Re- 
member that we have assumed a "call-by- 
reference" definition like that found in 
PL / I  and FORTRAN. )  In this case the output 
assertion is certainly not satisfied. But what 
about the alleged proof? At the beginning of 
each cut execution used in the proof, each 

FIa%ra~ 13. P r o c e d u r e  EXCHANGE 
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procedure variable is initialized to a unique 
symbolic value independently and assuming 
they are distinct variables. This results in a 
proof of correctness which only holds for 
procedure invocations involving distinct 
arguments. 

There are two solutions to this problem. 
One is to disallow procedure invocations 
which use the same argument variable in 
more than one parameter position (at least 
those which are not read-only within the 
subprocedure). The other is to extend the 
proof method to handle such cases cor- 
rectly. If one considers the form of the CALL 
while performing the proof of correctness, 
the method is easily extended. For the pro- 
cedure EXCHANGE there are only two 
cases, represented by: 

1) CALLEXCHANGE(Z,  W); 
2) CALL EXCHANGE(Z, Z); 

For each case the symbolic executions need 
be faithful to the rules used in the regular 
executions. That is, case 2 would treat X 
and Y as the same variable. The proof of 
that case would then fail since the final 
value of Z would be zero. One would then 
know that this procedure has not been 
proved correct for calls of the second form, 
which must be disallowed. The more typical 
exchange program involving a temporary 
variable (e.g., with body T *-- X; X *-- Y; 
Y ~- T) can be proved correct with respect 
to the given input/output assertions for 
both forms of calls. 

For procedures with many parameters, 
the number of combinations in which two or 
more arguments may be coincident is quite 
large. So one might prove the program is 
correct for the favored case of no coinci- 
dence, and then prove only the forms of 
coincidence which are needed for the higher- 
level program proofs. 

6. PROBLEMS 

Much of the work in performing a proof of 
correctness of a program is tedious and 
error prone. Considerable research has been 

done in attempting to get the computer 
itself to construct or at least to assist in 
the construction of program proofs [2, 5, 8, 
11, 14, 17, 20, 21]. In fact, the method of 
proof presented here was developed first by 
Deutsch [5] for his automated program veri- 
fier. In this section, a brief summary of the 
difficulties in constructing program proofs 
is given. Some of the problems become exag- 
gerated when one tries to automate the 
process. 

Some effort has gone into developing 
programming languages in which proofs of 
correctness are easier [9, 10]. In pursuing 
this goal one must realize the inherent limi- 
tations. A programming language is a 
medium in which to describe algorithms, 
perhaps algorithms of a certain type, or 
which operate on certain data. That medium 
can encourage obscure descriptions of al- 
gorithms and make formal analysis difficult 
or impossible by providing clumsy, overly 
general, and ill-defined features. However, 
the reason an algorithm performs a desired 
computation correctly is independent of the 
notation in which it is described. For ex- 
ample, the fact that the simplex algorithm 
can be used to optimize linear functions 
subject to a set of linear constraints is based 
on significant mathematical theory. With- 
out that theory, or without rediscovering it, 
the most elegant simplex algorithm written 
in the perfect programming language cannot 
be proved correct. 

The proof method based on symbolic exe- 
cution is appealing because it is an extension 
of the notion of normal program execution. 
One can often devise the "proper" proof 
technique for a class of language constructs 
by considering their behavior under regular 
execution. The implementation of a program 
verifier on a computer, based on symbolic 
execution, closely follows that of an in- 
terpreter for the language. 

Much recent work [3, 19, 23] has been 
concerned with programs that manipulate 
complex data structures (e.g., list struc- 
tures). The difficulty with such programs 
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appears to be the lack of an established no- 
tation, manipulative techniques, and known 
results concerning data structures. The 
simple mathematical model of variable and 
value is complicated by the introduction of, 
what corresponds to in one form or another, 
computer storage cells. Variables refer to 
storage which contains values, and the as- 
sociations between these (variables, storage, 
values) are changed by the program execu- 
tion. 

Closely related to the data structure prob- 
lem is the problem of developing a general, 
flexible, easy-to-read specification language. 
A program is proved correct with respect to 
its input/output assertions. The examples in 
this presentation were chosen for the ease 
with which their input/output assertions 
could be expressed. 

A major area of concern in implementing 
program verifiers on a computer is providing 
the formula manipulation and theorem 
proving power required. The symbolic exe- 
cution of programs requires an efficient and 
comprehensive formula manipulation sys- 
tem. Each execution of a PROVE statement 
requires establishing the truth of a formula 
of arbitrary complexity. Program proving 
has spurred work on efficient, domain- 
dependent computer theorem provers. 

The last major problem area discussed is 
that of composing inductive assertions. The 
input/output assertions which a programmer 
must supply axe often difficult to determine. 
However, the need for such input/output 
assertions does not seem artificial; a pro- 
grammer must somehow express what the 
program was intended to do. The necessary 
inclusion of inductive assertions which cut 
the loops in the program does seem arti- 
ficial. These are required not so much to 
specify the program properties but as an 
inductive assistance to the program proving 
method. One can pose the generation of the 
inductive assertions as a theorem proving 
problem by formulating one large theorem 
for the complete program of the form: 
show that there exist inductive assertions 

P1, P2, • • •, Pn such that all of the expres- 
sions resulting from PROVE statements are 
true. In general, this is a very difficult theo- 
rem to prove. For simple programs, induc- 
tive assertions can be generated automati- 
cally and some exploration into their auto- 
matic generation and/or enhancement for 
larger programs using heuristic methods is 
reported in [12, 22]. 

SUMMARY 

This paper attempts to give a basic intro- 
duction to the fascinating world of proving 
that computer programs meet their speci- 
fications. One style of producing program 
specifications, in the form of input/output 
assertions, was introduced to allow a defini- 
tion of a "correct program." Then the sym- 
bolic execution of programs was explained 
as one way of establishing the consistency 
between the program's code and its input/ 
output assertions. 

Note that, among all the program speci- 
fication methods and program proof meth- 
ods which have been proposed and de- 
veloped, we have presented a very narrow 
glimpse of one. I t  is the most intuitive ap- 
proach of which we know and, therefore, 
one of the most likely candidates for produc- 
tive future development and use. 
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